Morphology and Size Evolution of Massive and Compact Galaxies from z=8 to z=1

Daniel Ceverino (UAM, Madrid)

Avishai Dekel, Frederic Bournaud, Andreas Burkert, Reinhard Genzel, Joel Primack, Anatoly Klypin

VDI makes classical spheroids (n=3-4.5)

Gravitationally unstable isolated discs

Normalized surface density profile: $log(-log \Sigma)$

Elmegreen, Bournaud, Elmegreen (2008)

Galaxy formation simulations done with ART

- AMR code: HYDRO-ART (Kravtsov et al 1997, Kravtsov 2003)
- Gas Cooling, Star Formation, Stellar Feedback (Ceverino & Klypin 2009; Ceverino, Dekel and Bournaud 2010)
 - Cooling below 10⁴ K (minimum temperature of 300 K).
 - Thermal feedback + runaway stars.
 - Things that we are NOT doing (although it is tempting):
 Shutdown cooling, shutdown of hydrodynamical forces.
- Sample of 13 halos with a virial mass between 10¹² -10¹³ M_☉ h⁻¹ at z=1
- Maximum resolution of 30-70 pc

.1 85 5

2 ensity

Young stellar disc

Ceverino, Dekel & Bournaud 2010

A Massive Bulge

Stellar Surface Density

Face-on view

Edge-on view

The sample at z=1

A large variety of shapes: from round to disky spheroids

Sersic fitting to stellar surface density

- $< n > = 3.3 \pm 1.4$
- Large spread of shapes:
 from n≈5 to n≈2
- Not a single case of pure exponential profiles (n=1)

Spheroid and disk components

Sersic fitting for different components

Continuous bulge and disc growth

- Continuous disc growth fuels by gas accretion
- Continuous bulge growth due to VDI
- Major mergers only produces discrete and rare jumps in the stellar growth.
- $M_s/M_{vir} \approx 0.5 \ \Omega_b/\Omega_m$

Mass-size relation

Mass-Size Evolution

One example:

Period of frequent wet major mergers

Period of strong gas accretion, disc growth and disk instabilities (VDI)

ABOUT CLUES

- LG_2Mpc_2048 run
- WMAP 5
- $\Delta = 170 \text{ pc at z} = 1$
- Last major merger at z≈1
- $M_G/M_{vir} \approx 0.4-0.6 \Omega_b/\Omega_m$
- 4096³ running at SuperMIC

Conclusions

- Final products of violent disk instability (VDI) are compact (R_e=2-4 kpc), classical (2<n_{sersic}<5), spheroids or S0s with D/T<0.4
- Disc and bulge grow and evolve together mostly by smooth gas accretion and VDI
- The effective radius of typical, $M_s=10^{11}$ M_{sun} , galaxies at z=1 has grown by a factor 2.5 between z=4 and z=1.
- More rare and massive galaxies evolve faster due to an early phase of frequent wet mergers (z>4) plus a second, more extended phase of disc and bulge growth by VDI.

