Introduction 00	1. Observations 00	2. Reductions		Conclusion

Cosmic Flows: from Observations to Simulations

CLUES 2012 Meeting

June 19th 2012

Jenny Sorce

University of Lyon / IPNL - University of Hawaii / IFA

Dipole \rightarrow **deviant motions** from the Hubble expansion

Mostly due to large scale structures

Image: Image:

.

Introduction 00	 Observations OO 	2. Reductions 000		Conclusion
Cosmic Flows				
Cosmic	Flows			

<u>Goal</u>: Reconstruct density-velocity fields \rightarrow need of $v_{peculiar radial}$ Why: velocity = high linearity, large-scale correlation (> density)

$$\hookrightarrow \vec{\nabla}.\vec{v} = -H_0 f(\Omega_m, \Omega_h)\delta \tag{1}$$

Jenny Sorce (IPNL)

Introduction 00	 Observations ●○ 	2. Reductions			Conclusion	
1.a Cosmic Flows 1, 2, etc						

1.a Cosmic Flows 1, 2, etc

Observed Galaxies

ightarrow Cosmic Flows - 1

 \rightarrow Cosmic Flows - 2

Tully et al. 2008, Courtois et al. 2012b, etc "Each CF" tends to improve:

- **quality** (e.g. accuracy)
- **quantity** (e.g. ZOA, farther)

Figure: Courtesy of H. Courtois

Courtois et al. 2011a, b, 2012a, Tully et al. 2012, etc

	1. Observations	2. Reductions		4. Analysis	Conclusion	
	00					
1 h Two very accurate observations						

1.a Two very accurate observations

Photometry: Optical & Infrared

Radioastronomy: HI (21cm)

Green Bank

Parkes ▶ ∢ ≣ ▶ ≣ ∽

Jenny Sorce (IPNL)

2012 5 / 16

	1. Observations	2. Reductions		4. Analysis	Conclusion	
		000				
2 - Surface Photometry						

2.a Surface Photometry

Introduction 00	 Observations OO 	 Reductions ○●○ 			Conclusion		
2.b HI/Inclination							
2.b HI/In	clination						

HI profile width at 50 % of the mean flux within the velocity range encompassing 90 % of the total HI flux.

At EDD, http://edd.ifa.hawaii.edu, you can find all the material !

Introduction 00	 Observations OO 	 Reductions ○○● 	3. Simulations 000	4. Analysis 00	Conclusion		
2.c Peculiar Velocities							
2.c Pecu	ıliar Velociti	es					

 $v_{CMB} = H_0 \times d + v_{peculiar\ radial} \quad (2) \quad m - M = 5log_{10}(d(Mpc)) + 25 \quad (3)$

Jenny Sorce (IPNL)

Introduction 00	1. Observations 00	2. Reductions	3. Simulations ●○○		Conclusion	
3.a Reconstruction: Wiener-Filter						

3.a Reconstruction: Wiener-Filter

WF = Linear Minimal Variance Estimator using noisy, sparse and incomplete data with the covariance matrix given by an assumed prior model.

$(CR (\land CDM); IC) + WF = Constrained Simulations reproducing LSS$

Figure: Adapted from Timur's Thesis

Structures are *not* at the proper **positions**.

The quality decreases quickly with the scale.

Jenny Sorce (IPNL)

3.b Reconstruction: Reverse Zeldovich Approximation

	1. Observations	2. Reductions	3. Simulations	4. Analysis	Conclusion	
			000			
3 c Reconstruction: Summany						

3.c Reconstruction: Summary

11 / 16

4.a Cosmic-Flows 1: Inanimate

 Introduction
 1. Observations
 2. Reductions
 3. Simulations
 4. Analysis
 Conclusion

 00
 00
 00
 00
 00
 0
 0

 4.a Cosmic-Flows 1: Animate
 4. Analysis
 4. Analysis
 4. Analysis
 4. Analysis

4.a Cosmic-Flows 1: Animate

Towards the Great Attractor (Plane: (SGX,SGY))

Figure: Courtesy of D. Pomarède

Away from the Local Void (Plane: (SGY, SGZ))

Figure: Courtesy of D. Pomarède

Solution State State

Figure: Courtesy of D. Pomarède

Observations → Reductions → Constrained Simulations (RZA) → Analysis

Great Attractor in CF2 data: nature and position?

 $\hookrightarrow 90 km.s^{-1} =$ Shapley? Farther? (Kashlinsky et al.) (not in CF2 data \rightarrow in CF2 Simulations)

Universe Content

 \hookrightarrow Dark Matter & Energy

Introduction 00	1. Observations 00	2. Reductions			Conclusion	
Aknowledgments						

Thank you

イロト イ団ト イヨト イヨト

Introduction 00	 Observations OO 	2. Reductions			Conclusion	
References						

- **1** R.B. Tully & J.R. Fisher, *A&A*, 54:661-673, 1977.
- R.B. Tully et al., ApJ, 184:676, 2008.
- S. Gottlöber et al., *CLUES*, 309, 2010.
- H.M. Courtois et al., MNRAS, 415:1935-1942, 2011a.
- **I**.M. Courtois et al., *MNRAS*, 414:2005-2016, 2011b.
- **1** H.M. Courtois et al., *ApJ*, 744, 2012.
- R.B. Tully & H.M. Courtois, ApJ, 749, 2012.
- **3** J.G. Sorce et al, *in prep*.
- A. Kashlinsky et al., ApJ Letters, 712:L81-L85, 2010.
- A. Kashlinsky et al., ApJ, 732, 2011.