Entropy profiles of MUSIC clusters Jesús Vega Universidad Autónoma de Madrid

CLUES Workshop 2012

Objective

• Extend the work done in Faltenbacher et al. 2007 (MARENOSTRUM **adiabatic** simulation)

Entropy of gas and dark matter in galaxy clusters

Andreas Faltenbacher,^{1,2*} Yehuda Hoffman,³ Stefan Gottlöber⁴ and Gustavo Yepes⁵

¹Shanghai Astronomical Observatory, 80 Nandan Road, Shanghai 200030, China

²UCO/Lick Observatory, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA

³Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel

⁴Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany

⁵Grupo de Astrofísica, Universidad Autónoma de Madrid, Madrid E-280049, Spain

- Entropy profiles in MUSIC clusters with **radiative physics**
- Redshift evolution

- I. Introduction
- 2. MUSIC clusters
 - 2.1. Relaxed and unrelaxed clusters
- 3. Entropy profiles of gas and dark matter
 - 3.1.Adiabatic clusters
 - 3.2. Radiative clusters
 - 3.3. Effects of radiative physics
 - 3.4. Redshift evolution
 - 3.5. Gas entropy cores
- 4. Conclusions

I. Introduction

- 2. MUSIC clusters
 - 2.1. Relaxed and unrelaxed clusters
- 3. Entropy profiles of gas and dark matter
 - 3.1.Adiabatic clusters
 - 3.2. Radiative clusters
 - 3.3. Effects of radiative physics
 - 3.4. Redshift evolution
 - 3.5. Gas entropy cores
- 4. Conclusions

I. Introduction

• Entropy profiles of the ICM gas and the DM in galaxy clusters

$$K_{g} = \frac{3k_{B}}{\omega n_{p}} T_{g} \rho_{g}^{-2/3} = \sigma_{g}^{2} \rho_{g}^{-2/3} \qquad K_{DM} = \sigma_{DM}^{2} \rho_{DM}^{-2/3}$$

$$\mu = 0.588 \qquad S = \ln(K^{3/2}) + cons \tan t \qquad \text{Convention: } S \to K \qquad \text{3D velocity}$$
dispersion

• Velocity dispersion of the gas

kinetic energy = proper velocity + thermal dispersion $\sigma_{Turbulent}^{2} = \sigma_{x}^{2} + \sigma_{y}^{2} + \sigma_{z}^{2} \qquad \sigma_{Thermal}^{2} = \frac{3k_{B}T_{g}}{\mu m_{p}}$ $\sigma_{Extended}^{2} = \sigma_{Thermal}^{2} + \sigma_{Turbulent}^{2}$ Phase-space density: $Q_{DM} = \rho_{DM}\sigma_{DM}^{-3} \rightarrow Q_{DM} = K_{DM}^{-2/3}$

- I. Introduction
- 2. MUSIC clusters
 - 2.1. Relaxed and unrelaxed clusters
- 3. Entropy profiles of gas and dark matter
 - 3.1.Adiabatic clusters
 - 3.2. Radiative clusters
 - 3.3. Effects of radiative physics
 - 3.4. Redshift evolution
 - 3.5. Gas entropy cores
- 4. Conclusions

2. MUSIC clusters

- **Multidark** simulation: ART dark matter only simulation (Anatoly Klypin @ NAS Ames)
 - WMAP7 ($\Omega_{\Lambda} = 0.73, \Omega_{m} = 0.27, \Omega_{m} = 0.0469, \sigma_{8} = 0.82, h = 0.7$)
 - 8.6 billion particles
 - I (Gpc/h)³ volume
- **MUSIC** (**Multidark resimulated clusters**)
 - 8 times more resolution in 6 Mpc region
 - over 800 clusters with M > 10^{14} h⁻¹M_{\odot} up to z = 1

- $m_{dm} = 9.01 \times 10^8 h^{-1} M_{\odot}$; $m_{gas} = 1.09 \times 10^8 h^{-1} M_{\odot}$

2. MUSIC clusters

2.1. Relaxed and unrelaxed clusters

• Substructure mass fraction (fsub): mass fraction in substructures within R_{vir} (most masive substructure not included)

• Centre of mass displacement (s): normalized offset between the centre of mass of the halo and the potential centre

• Virial ratio:

(Neto et al. 2007)

2.1. Relaxed and unrelaxed clusters

ADIABATIC				
z	N (≥M)	$N_{relaxed} (\geq M)$		
0,00	189	90		
0,11	170	77		
0,25	128	55		
0,33	97	36		
0,43	80	29		
RADIATIVE				
z	N (≥M)	$N_{relaxed} (\geq M)$		
z 0,00	N (≥M) 188	N _{relaxed} (≥M) 89		
z 0,00 0,11	N (≥M) 188 171	N _{relaxed} (≥M) 89 76		
z 0,00 0,11 0,25	N (≥M) 188 171 128	N _{relaxed} (≥M) 89 76 59		
z 0,00 0,11 0,25 0,33	<pre>N (≥M) 188 171 128 99</pre>	N _{relaxed} (≥M) 89 76 59 36		

- I. Introduction
- 2. MUSIC clusters
 - 2.1. Relaxed and unrelaxed clusters
- 3. Entropy profiles of gas and dark matter
 - 3.1.Adiabatic clusters
 - 3.2. Radiative clusters
 - 3.3. Effects of radiative physics
 - 3.4. Redshift evolution
 - 3.5. Gas entropy cores
- 4. Conclusions

3.I. Adiabatic clusters

Density profiles

Universidad Autónoma de Madrid

3.I. Adiabatic clusters

Velocity dispersion profiles

Universidad Autónoma de Madrid

3.I. Adiabatic clusters

DM (relaxed) Relaxed Relaxed Unrelaxed Unrelaxed DM (unrelaxed) Thermal (relaxed) Thermal (unrelaxed) Extended (relaxed) Extended (unrelaxed) 1.00 1.00 1.00 $\sigma^2/\rho^{2/3}$ $\sigma^2/\rho^{2/3}$ $\sigma^2/\rho^{2/3}$ 0.10 0.10 0.10 GAS DM 0.01 0.01 0.01 0.10 1.00 0.10 1.00 0.10 1.00 0.01 0.01 0.01 R/R_{vir} R/R_{vir} R/R_{vir}

Entropy profiles

Universidad Autónoma de Madrid

3.2. Radiative clusters

Universidad Autónoma de Madrid

3.2. Radiative clusters

2.2 2.2 Relaxed Relaxed 2.2 Unrelaxed Unrelaxed 2.0 2.0 2.0 1.8 1.8 1.8 1.6 1.6 1.6 1.4 1.4 1.4 ь ь ь 1.2 1.2 1.2 1.0 1.0 1.0 DM (relaxed) DM (unrelaxed) GAS DM 0.8 0.8 0.8 Thermal (relaxed) Thermal (unrelaxed) Extended (relaxed) Extended (unrelaxed) 0.1 1.0 0.1 1.0 0.1 1.0 R/R_s R/R_s R/R_s

Velocity dispersion profiles

Universidad Autónoma de Madrid

3.2. Radiative clusters

Relaxed Relaxed DM (relaxed) Unrelaxed Unrelaxed DM (unrelaxed) Thermal (relaxed) Thermal (unrelaxed) Extended (relaxed) Extended (unrelaxed) 1.00 1.00 1.00 $\sigma^2/\rho^{2/3}$ $\sigma^2/\rho^{2/3}$ $\sigma^2/\rho^{2/3}$ 0.10 0.10 0.10 GAS DM 0.01 0.01 0.01 0.10 0.10 1.00 0.10 1.00 0.01 1.00 0.01 0.01 R/R_{vir} R/R_{vir} R/R_{vir}

Entropy profiles

Universidad Autónoma de Madrid

miércoles 20 de junio de 2012

Jesús Vega

- I. Introduction
- 2. MUSIC clusters
 - 2.1. Relaxed and unrelaxed clusters
- 3. Entropy profiles of gas and dark matter
 - 3.1.Adiabatic clusters
 - 3.2. Radiative clusters
 - 3.3. Effects of radiative physics
 - 3.4. Redshift evolution
 - 3.5. Gas entropy cores
- 4. Conclusions

Density profiles

Density profiles

Velocity dispersion profiles

miércoles 20 de junio de 2012

Velocity dispersion profiles

Velocity dispersion profiles

Universidad Autónoma de Madrid

Velocity dispersion profiles

Gas-to-DM entropy ratio

Gas-to-DM entropy ratio

Gas-to-DM entropy ratio

Power-law 10.0 DM (relaxed) DM (unrelaxed) Gas (relaxed) Gas (unrelaxed) $\sigma^2/\rho^{2/3}$ 1.0 Adiabatic Radiative β Relaxed 1.199 ± 0.003 1.10 ± 0.01 1.177 ± 0.005 1.121 ± 0.005 Unrelaxed 0.1 0.1 1.0 ${\sf R}/{\sf R}_{\sf s}$

- I. Introduction
- 2. MUSIC clusters
 - 2.1. Relaxed and unrelaxed clusters
- 3. Entropy profiles of gas and dark matter
 - 3.1.Adiabatic clusters
 - 3.2. Radiative clusters
 - 3.3. Effects of radiative physics
 - 3.4. Redshift evolution
 - 3.5. Gas entropy cores
- 4. Conclusions

Adiabatic density profiles

Radiative density profiles

Adiabatic velocity dispersion profiles

Radiative velocity dispersion profiles

Adiabatic gas-to-DM entropy ratio

Universidad Autónoma de Madrid

Radiative gas-to-DM entropy ratio

Radiative gas-to-DM entropy ratio

Universidad Autónoma de Madrid

Adiabatic power-law

Universidad Autónoma de Madrid

Radiative power-law

Universidad Autónoma de Madrid

Radiative power-law

Universidad Autónoma de Madrid

- I. Introduction
- 2. MUSIC clusters
 - 2.1. Relaxed and unrelaxed clusters
- 3. Entropy profiles of gas and dark matter
 - 3.1.Adiabatic clusters
 - 3.2. Radiative clusters
 - 3.3. Effects of radiative physics
 - 3.4. Redshift evolution
 - 3.5. Gas entropy cores
- 4. Conclusions

- Entropy core in adiabatic simulations is a real physical effect (Voit et al. 2005, Ascasibar et al. 2003)
- Resolution of the SPH simulations: sufficient with MUSIC (Lin et al. 2006)
- ISM in **hydrostatic equilibrium**:

- than the DM
- **Core radius** coincides with the radius at which the **DM temperature** reaches its **maximal** value

saa hattau

- I. Introduction
- 2. MUSIC clusters
 - 2.1. Relaxed and unrelaxed clusters
- 3. Entropy profiles of gas and dark matter
 - 3.1.Adiabatic clusters
 - 3.2. Radiative clusters
 - 3.3. Effects of radiative physics
 - 3.4. Redshift evolution
 - 3.5. Gas entropy cores

4. Conclusions

4. Conclusions

- Gas and DM entropies follow one to another very closely
- **Constant ratio** of the thermal gas entropy to that of the DM at large radii

K _{gas} /K _{DM} (R _{vir})	Adiabatic	Radiative
Relaxed	0.72 ± 0.16	0.71 ± 0.15

- Radiative: gas hotter (25%), no DM temperature inversion (15%) towards the center.
- DM entropy profile follows a **power law**: $K_{DM} \propto r^{\beta}$

altenbacher et al. 2007	Adiabatic	Radiative
$K_{DM} \propto r^{1.21}$	$K_{DM} \propto r^{1.20}$	$K_{DM} \propto r^{1.10}$
$Q_{DM} \propto r^{-1.82}$	$Q_{DM} \propto r^{-1.80}$	$Q_{DM} \propto r^{-1.65}$

- **No** significant **redshift evolution** (entropy ratio or power law)
- Gas entropy core: ~ 0.6 R_s (adiabatic) and ~ R_s (radiative)
- **Max DM temperature**: $R_{max} / R_s = 0.8 \pm 0.4$ (adiabatic)
- No entropy cores in radiative clusters

Jesús Vega

4. Conclusions

- Gas and DM entropies follow one to another very closely
- **Constant ratio** of the thermal gas entropy to that of the DM at large radii

Faltenbacher et al. 2007 K_{gas}/K_{DM} (R_{vir})AdiabaticRadiative $K_{gas}/K_{DM} = 0.71 \pm 0.18$ Relaxed \rightarrow 0.72 ± 0.16 0.71 ± 0.15

- Radiative: gas hotter (25%), no DM temperature inversion (15%) towards the center.
- DM entropy profile follows a **power law**: $K_{DM} \propto r^{\beta}$

Faltenbacher et al. 2007AdiabaticRadiative $K_{DM} \propto r^{1.21}$ $K_{DM} \propto r^{1.20}$ $K_{DM} \propto r^{1.10}$ $Q_{DM} \propto r^{-1.82}$ $Q_{DM} \propto r^{-1.80}$ $Q_{DM} \propto r^{-1.65}$

- No significant redshift evolution (entropy ratio or power law) Pratt et al. 2006)
- Gas entropy core: ~ 0.6 R_s (adiabatic) and ~ R_s (radiative)
- Max DM temperature: $R_{max} / R_s = 0.8 \pm 0.4$ (adiabatic) ³¹ (REXCESS clusters (Pratt et al. 2010)
- No entropy cores in radiative clusters

 \approx 1.

Newton

Adiabatic simulations

(Faltenbacher et al. 2007)

Jesús Vega

Thank you!

Universidad Autónoma de Madrid