## Chemical and radiative feedback in the primordial Universe

#### **Umberto Maio**

in collaboration with: M. Petkova, B. Ciardi, K. Dolag,

- L. Tornatore, S. Khochfar, J. Johnson, F. lannuzzi,
  - M. A. Campisi, R. Salvaterra, N. Yoshida

#### Max Planck Institute (MPE) Garching b. München

## Outline

- 1 Introduction
  - Motivations
- 2 Method
  - Molecules and metals
  - Chemistry and cooling

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- 3 Chemistry simulations
  - PopIII and PopII
  - The early IGM
  - 4 The End

#### Motivations

#### **Motivations**

**Goal:** Early structure formation and transition from the primordial metal-free star formation regime (high-mass or low-mass stars?) to the common, metal-enriched one (low-mass 'solar' stars):

- $\rightarrow$  What is the formation epoch of first objects?
- $\rightarrow$  What is the role of early molecules and metals?
- $\rightarrow$  How relevant is popIII star formation?
- $\rightarrow$  How fast is the transition to the standard popII regime?
- $\rightarrow$  What are the effects of different IMFs on SFR?
- → What are the effects of the underlying matter distribution?
- → What are the effects on cosmic re-ionization?...

Requirements: Study the properties of cosmic gas and

metal enrichment from stars, during cosmic evolution.

Techniques: N-body/SPH simulations (with Gadget).



- Cosmic structures originate from the growth of matter perturbations at early times (inflation), in an expanding, flat Universe, containing "dark" matter and "baryonic" matter.
- Baryonic structures form from in-fall and cooling of gas into DM potential well.
- Eventually, a cloud can form if the radiative losses are sufficient to make the gas condense and fragment:

$$t_{cool} = rac{3}{2} rac{nkT}{\mathcal{L}(n,T)} \ll t_{\rm ff} = \sqrt{rac{3\pi}{32G
ho}}$$

At early times, the cooling function is dominated by molecules ! After pollution from formed (baryonic) structures (→ *chemical feedback*) metals dominate.

イロト イヨト イヨト イヨト

Molecules and metals Chemistry and cooling

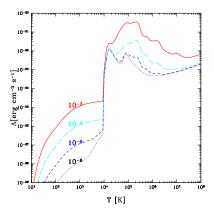
#### Molecules and metals

For a complete picture: necessity to follow gravity and hydrodynamics joined to molecular evolution and metal production during cosmic time (e.g. Galli& Palla, 1998; Abel et al., 1997)

- molecules determine <u>first</u> structure formation
- metals determine subsequent structure formation
- stellar evolution determines <u>timescales</u> and yields

Following and implementing metal and molecule evolution in numerical codes (N-body/SPH Gadget) required

(Yoshida et al., 2003; Tornatore et al., 2007; Maio et al., 2006, 2007, 2009, 2010, 2011a,b,c)


・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Molecules and metals Chemistry and cooling

Gas cooling function  $\longrightarrow$ 

In primordial regimes, the main coolants are H, He and molecules ( $H_2$  and HD).

In metal enriched ones, metal fine-structure transitions from C, O, Fe, Si (dominant over molecules at low temperatures).



(Maio et. al, 2007)

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Cooling leads the gas in-fall into DM potential wells.

PopIII and PopII The early IGM

## Z<sub>crit</sub>: transition from popIII to popII-I star formation

We study the effects connected to the existence of a critical metallicity Z<sub>crit</sub> (e.g. Bromm & Loeb, 2003; Schneider et al., 2003) and the transition from popIII SF ( $Z < Z_{crit}$ ) to popII-I SF ( $Z > Z_{crit}$ ).

In order to address such issues, we perform several numerical simulations of early structure formation adopting different values for  $Z_{crit}$  and exploring different scenarios.



#### Simulation set-up

(Maio et al., 2010, 2011b, Maio & Iannuzzi, 2011; Maio, 2011; Maio & Khochfar, 2012)

- standard-ACDM cosmology (1,7,14,43,143Mpc a side);
- molecular and metal chemistry;
- assume  $Z_{crit} = (10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}) Z_{\odot}$
- assume different popIII IMFs ( $\rightarrow$  top-heavy/Salpeter)
- assume different matter distributions ( $\rightarrow$  G vs non-G)

PopIII and PopII The early IGM

## Simulations of structure formation (example)

Example of structure formation

Umberto Maio Chemical and radiative feedback in the primordial Univers

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

크

PopIII and PopII The early IGM

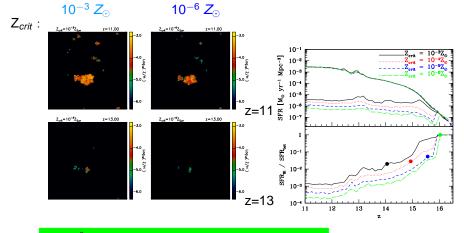
#### Metal enrichment in the Universe

Z (absolute) O (absolute)

Fe (absolute)

Total enrichment

O enrichment


Fe enrichment

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q ()

Metal enrichment led by stellar evolution: SNII/PISN  $\longrightarrow$  O, SNIa  $\longrightarrow$  Fe

PopIII and PopII The early IGM

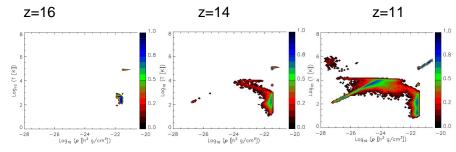
## Results (1/14): effects for different Z<sub>crit</sub>



box: 1Mpc^3; popIII IMF: top-heavy with slope=-1.35, range=[100 $M_{\odot}$ ,500 $M_{\odot}$ ]

(Maio et al., 2010)

Umberto Maio


Chemical and radiative feedback in the primordial Universe

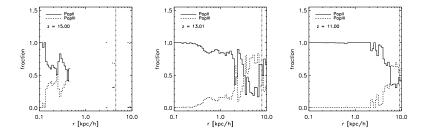
PopIII and PopII The early IGM

## Results (2/14): polluting the surrounding medium

#### Phase diagrams with color contours for enriched gas

 $(Z_{crit} = 10^{-4} Z_{\odot}, \text{ box side} = 1 \text{ Mpc})$ 



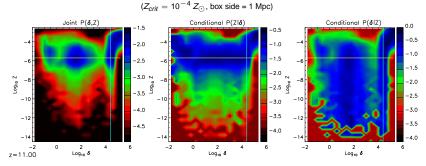

Metals produced by stellar evolution pollute the surrounding, pristine gas with an *"inside-out"* mode. (Maio et al, 2011b)

PopIII and PopII The early IGM

#### Results (3/14): effects on the surrounding

Radial fractions of popII ( $Z \ge Z_{crit}$ ) and popIII ( $0 < Z < Z_{crit}$ ) enriched gas in the most massive halo at  $\sim 10 - 1000$  pc (physical)

(Maio et al., 2011b)




イロト イ団ト イヨト イヨト

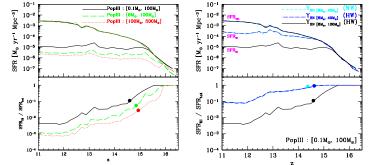
PopIII and PopII The early IGM

## Results (4/14): metallicity distribution

#### Metallicity distributions with color contours for enriched gas at z = 11



At  $z \sim 11$ , after  $\sim 10^8$  yr from the onset of star formation, most of the enriched mass has  $Z > Z_{crit}$ . (Maio et al, 2011b)


イロト イヨト イヨト イヨト

PopIII and PopII The early IGM

## Results (5/14): changing the popIII IMF

PopIII range (Salpeter IMF - top-heavy IMF)

#### SN range (Salpeter IMF)



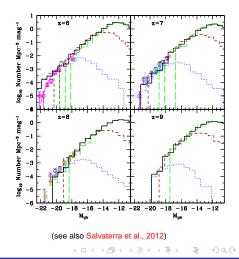
Mass ranges for popIII IMF and/or massive SN have significant impacts:

 $\label{eq:Larger} \mbox{Larger masses} \rightarrow \mbox{Shorter stellar lifetimes} \rightarrow \mbox{Earlier enrichment} \rightarrow \mbox{Shorter "popIII epoch"}$ 

(Maio et al., 2010)

Popill and Popil The early IGM

## Results (6/14): Luminosity functions


For each galaxy:  $L_{\lambda} = L_{\lambda}^{\text{II}} + L_{\lambda}^{\text{III}}$ in L5, L10, L30

PopII-I SEDs from Starbust99 (Leitherer, 1999; Vazquez & Leitherer, 2005) PopIII SEDs from Schaerer (2002) No dust assumed

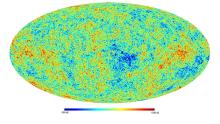
Observational data points from:

Bouwens et al., 2007 (circles) Bouwens et al., 2011 (circles) McLure et al., 2010 (triangles) Oesch et al., 2012 (squares)

Fit at z = 6 from Su et al., 2012.



Popill and Popil The early IGM


# Results (7/14): primordial matter distributions and Non-Gaussianities

Basic assumption: Gaussian perturbations → evidences for <u>non-Gaussianities</u> (CMB). Primordial non-Gaussianities are introduced via (Salopek & Bond, 1990;

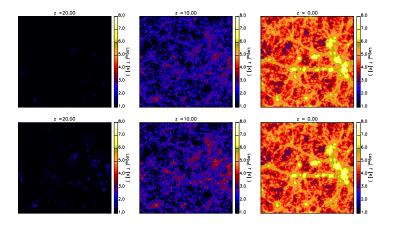
Desjacques & Seljak, 2010)

$$\Phi = \Phi_L + f_{\rm NL} \left( \Phi_L^2 - \langle \Phi_L^2 \rangle \right)$$

 $\Phi$  is the Bardeen potential (Newton potential at sub-Hubble scales),  $\Phi_L$  is the *linear* (Gaussian) part, and  $f_{\rm NL}$  the non-Gaussian parameter.



credit: WMAP

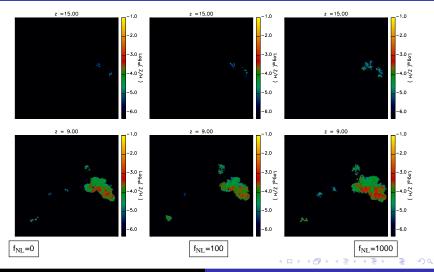

 $\label{eq:hl} \begin{array}{l} f_{\rm NL} = 0, \, 10, \, 50, \, 100, \, 1000 \\ \text{box sides: } 0.5 \, \text{and } 100 \, \text{Mpc/h} \\ \text{number of particles: } 2 \times 320^3 \\ \text{gas mass resolution: } 42 \, M_\odot/h \\ \text{and } 3 \times 10^8 \, M_\odot/h \end{array}$ 

See: Maio & Iannuzzi (2011); Maio (2011) 🚊 🕨 🚊 🛷 🔍

PopIII and PopII The early IGM

#### Results (8/14): Non-G and the cosmic web

 $f_{\rm NL}=0$ 

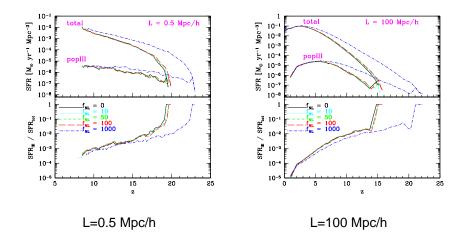



f<sub>NL</sub>=1000

(日)

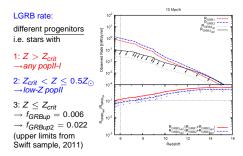
PopIII and PopII The early IGM

## Results (9/14): Non-G and chemical feedback




Umberto Maio

Chemical and radiative feedback in the primordial Universe


PopIII and PopII The early IGM

#### Results (10/14): Non-G effects on star formation

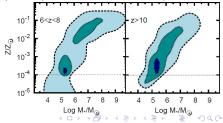


PopIII and PopII The early IGM

## Results (11/14): Implications for LGRBs



$$R_{GRB} = \frac{\gamma_b \zeta_{BH} f_{GRB}}{4\pi} \int_{z} \dot{\rho}_{\star} \frac{dz'}{(1+z')} \frac{dV}{dz'} \int_{L_{th}(z')} \Psi(L') dL'$$

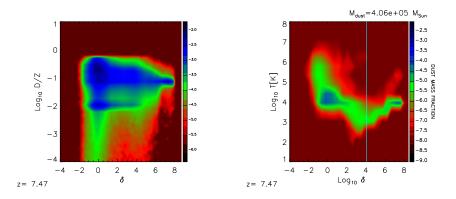

 $R_{GRB}$ : gamma-ray burst rate,  $\gamma_b$ : beaming factor,  $\zeta_{BH}$ : fraction of expected BH (IMF),  $f_{GRB}$ : fraction of expected GRB from collapse onto a BH (swift),  $\dot{\rho}_{\star}$ : star formation rate density (simulation),  $\Psi(L)$ : Schechter luminosity fct. (assumption),  $L_{th}$ : instrumental sensitivity (Swift) PopIII IMF: top-heavy over [100, 500]M\_{\odot} PopIII IMF: Salpeter over [0.1, 100]M\_{\odot}

 $\begin{array}{l} \mbox{Detectable fraction (by BAT/Swift) of popIII GRBs:} \\ \sim 10\% \mbox{ at } z > 6 \\ \gtrsim 40\% \mbox{ at } z > 10 \\ \approx 0 \mbox{ the whole population} \end{array}$ 

#### GRB-hosts:

the highest probability of finding popIII GRBs is in hosts with  $M_{\star} < 10^7 \, M_{\odot}$  and  $Z \gtrsim Z_{crit}$  (efficient pollution)






Chemical and radiative feedback in the primordial Universe

Umberto Maio

PopIII and PopII The early IGM

#### Results (12/14): dust from PISN/SN



D/Z is NOT constant!

(Fiby preliminary results)

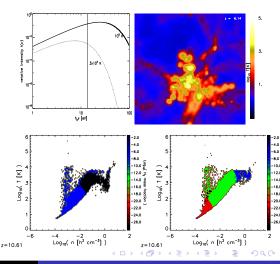
< @ ▶

★ E ► ★ E

크

PopIII and PopII The early IGM

## Results (13/14): radiative feedback on gas cooling


#### RT from ionizing sources:

(Petkova & Springel, 2009, 2011; Petkova & Maio, 2012)

- stars are sources of photons
- Planck spectrum  $s_{\gamma}(\nu)$
- multi-frequency method sampling the spectrum with ~ 150 frequency bins
- molecules are self- shielded

(e.g., Draine & Bertoldi, 1996)

- NB: RT is coupled with hydro and chemistry self-consistently, and NOT run on postprocessing
- see also: Abel & Gnedin (2001); Ricotti et al. (2001); Ahn & Shapiro (2007); Whalen & Norman (2009)



Umberto Maio

Chemical and radiative feedback in the primordial Universe

PopIII and PopII The early IGM

Results (14/14): effects on re-ionization

No RT

With RT

イロン イヨン イヨン イヨン

르

(Preliminary results!!!)

#### Summary...

- We have presented results from cosmological N-Body, hydrodynamical, chemistry and radiative simulations
- We studied the early stellar populations, the transition from popIII to popII-I one, and its interplay with the surroundings.

Conclusions...

- Early ( $z \sim 15 20$ ) metal enrichment from the first stars is very strong: the popIII/popII transition is very rapid ( $\sim 10^7 10^8 \text{ yr}$ ), and the early contribution to the total SFR is  $\sim 10^{-3}$  for top-heavy popIII IMF and  $\sim 10^{-2} 10^{-1}$  for Salpeter-like popIII IMF (after only  $\Delta t \sim 10^8 \text{ yr}$  from SF)
- Radiation from massive popIII stars can easily dissociate molecules (where not shielded), and heat surrounding gas inhibiting further SF (work in progress)
- Results are not very sensitive to the assumed Z<sub>crit</sub>, popIII metal yields, IMF slope, primordial non-Gaussianities, etc.



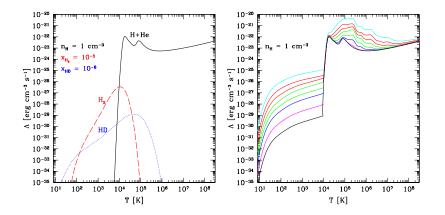
## Thank you...

#### Umberto Maio

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

umaio@mpe.mpg.de



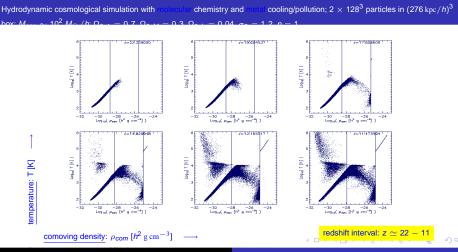

크

Umberto Maio Chemical and radiative feedback in the primordial Universe

Umberto Maio Chemical and radiative feedback in the primordial Univers

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ④ < ⊙

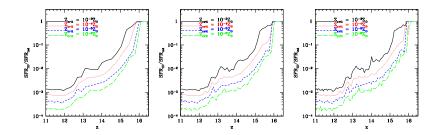
#### Extra: cooling functions...




Umberto Maio Chemical and radiative feedback in the primordial Universe

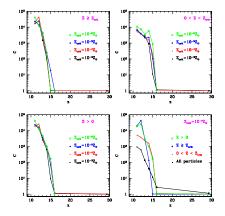
æ

크


## Resolving the gas in-fall: evolution in the $\rho$ – T space



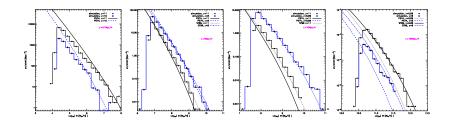
Umberto Maio


Chemical and radiative feedback in the primordial Universe

#### Extra: star formation ratio (box side = 1 Mpc)...



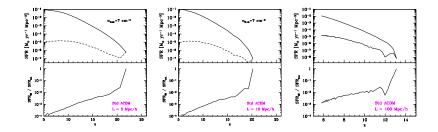
크


#### Extra: clumping factors (box side = 1 Mpc)



→ E → < E →</p>

크

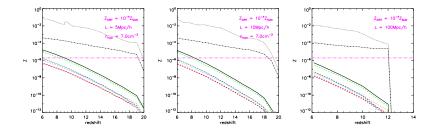

## Extra: Mass functions (larger simulations)



Umberto Maio Chemical and radiative feedback in the primordial Univer

-

### Extra: SFR (larger simulations)




Umberto Maio Chemical and radiative feedback in the primordial University

Э

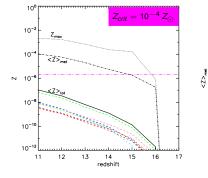
æ

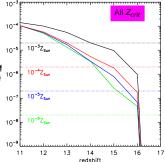
#### Extra: Metallicity evolution (larger simulations)



Umberto Maio Chemical and radiative feedback in the primordial Universe

Image: A matrix


#### Results: metallicity evolution


Dotted lines: maximum metallicity.

Dot-dashed lines: average metallicity over the enriched particles.

Solid lines: average metallicity over the whole box.

Dashed lines: average individual metallicities over the whole box.





크

(e.g., Maio et al, 2010)

(日)

| Introduction<br>Method<br>Chemistry simulations                                          |                                                                    |   |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---|
| The End                                                                                  |                                                                    |   |
| $	extsf{H}$ + $	extsf{e}^  ightarrow$ $	extsf{H}^+$ + $2	extsf{e}^-$                     | $H_2 + \gamma \rightarrow H_2^+ + e^-$                             |   |
| $H^+$ + e $^  ightarrow$ $H$ + $\gamma$                                                  | $H^+_2$ + $\gamma 	o 2 \overline{H}^+$ + $e^-$                     |   |
| $H$ + $\gamma  ightarrow H^+$ + $e^-$                                                    | $H_2^-$ + $\gamma \rightarrow 2H$                                  |   |
| $H^-$ + $e^- \rightarrow H$ + $2e^-$                                                     | $H^+_2$ + $\gamma 	o H$ + $H^+$                                    |   |
| $H^-$ + $\gamma  ightarrow H$ + $e^-$                                                    | $H^{-}$ + $H^{+}  ightarrow 2H$                                    |   |
| He + e $^  ightarrow$ He $^+$ + 2e $^-$                                                  | ${\rm H^-}$ + ${\rm H^+}$ $ ightarrow$ ${\rm H_2^+}$ + ${\rm e^-}$ |   |
| He $^+$ + e $^  ightarrow$ He + $\gamma$                                                 | ${ m H_2^+}$ + $e^-  ightarrow 2{ m H}$                            |   |
| $\mathrm{He^{+}}$ + $\mathrm{e^{-}}$ $ ightarrow$ $\mathrm{He^{++}}$ + $2\mathrm{e^{-}}$ | ${\rm H_2^+}$ + ${\rm H^-} \rightarrow {\rm H}$ + ${\rm H_2}$      |   |
| ${ m He^{++}}$ + ${ m e^-}$ $ ightarrow$ ${ m He^+}$ + $\gamma$                          | $D$ + $\gamma  ightarrow D^+$ + $e^-$                              |   |
| ${ m He^+}$ + $\gamma  ightarrow { m He^{++}}$ + e $^-$                                  | $D^+$ + $e^  ightarrow$ $D$ + $\gamma$                             |   |
| He + $\gamma  ightarrow$ He $^+$ + e $^-$                                                | $D+H_2\toHD+H$                                                     |   |
| ${\sf H}$ + ${f e}^  ightarrow$ ${\sf H}^-$ + $\gamma$                                   | $D^+ + H_2 \rightarrow HD + H^+$                                   |   |
| $H^- + H \rightarrow H_2 + e^-$                                                          | $HD + H \to D + H_2$                                               |   |
| ${ m H}$ + ${ m H}^+$ $ ightarrow$ ${ m H}_2^+$ + $\gamma$                               | $HD + H^+ \rightarrow D^+ + H_2$                                   |   |
| $H_2^+ + H \rightarrow H_2 + H^+$                                                        | $H^+ + D \to H + D^+$                                              |   |
| $H_2 + H \rightarrow 3H$                                                                 | $H + D^+ \rightarrow H^+ + D$                                      |   |
| $H_2 + H^+ \rightarrow H_2^+ + H$                                                        | He + H $^+  ightarrow$ HeH $^+$ + $\gamma$                         |   |
| $H_2$ + $e^- \rightarrow 2H$ + $e^-$                                                     | $HeH^+ + H \rightarrow He + H_2^+$                                 |   |
| ${ m H^-}$ + ${ m H}$ $ ightarrow$ 2H + ${ m e^-}$                                       | HeH⁺□+ γ ⊐→ Hē + H⁺-́                                              | E |

Umberto Maio

Chemical and radiative feedback in the primordial Univers

#### Numerical RT – A Multi-Frequency Moment Method

Petkova & Springel (2009,2011), Petkova & Maio (2012)

The RT equation for the photon number density per frequency

$$\begin{split} \frac{\partial n_{\gamma}(\nu)}{\partial t} &= c \frac{\partial}{\partial x_{j}} \left( \frac{1}{\kappa(\nu)} \frac{\partial n_{\gamma}(\nu) h^{ij}}{\partial x_{i}} \right) - c \,\kappa(\nu) \, n_{\gamma}(\nu) + s_{\gamma}(\nu), \\ \text{where} \\ n_{\gamma}(\nu) &= \frac{1}{c} \frac{4\pi I(\nu)}{h_{\rho}\nu} \,. \end{split}$$

- Closure relation Eddington tensor h<sup>ij</sup> that gives effective radiation direction
- Stars are the sources of ionizing photons
- Source function s<sub>γ</sub>(ν) stellar luminosity has a black-body spectrum