The Jubilee Simulation

William Watson

The JUropa huBbLE volumE (JUBILEE) Project

- Collaboration: Ilian Iliev (Sussex), Gustavo Yepes (UAM), Alexander Knebe (UAM), Stefan Gottloeber (AIP), Jose Maria Diego (UniCan), E. Martínez González (IFCA)
- Simulation run late 2011, taking ~1.5 million computing hours, on Juropa at the Jülich Supercomputing Centre (JSC), Germany. Using 8000 cores.
- 6 Gpc/h box size, 6000³ particles (216 Billion), Particle Mass: 7.49x10¹⁰/h M_{sun}, resolution down to the smoothing length of 50kpc/h
- 30 output slices stored of particle data (halo catalogues stored for 105 slices) totaling ~150 TB of data
- WMAP 5 cosmology (Ω_{M} = 0.27; Ω_{Λ} = 0.73; h = 0.7; σ_{8} = 0.8; n=0.96; Ω_{baryon} = 0.044)
- Code used was CubeP³M, a massively parallel, collisionless dark matter N-body code
- jubilee.ft.uam.es/simulations

- All-sky map of the Integrated Sachs-Wolfe effect (or ISW)
- Catalogs of luminous red galaxies (or LRG), radio and IR galaxies
- All sky maps of the Sunyaev-Zel'dovich (or SZ) effect
- All sky maps of lensing effects

The Jubilee Mass Function

10

SO and AHF Residuals z = 0

FOF Residuals z = 0

FOF Residuals z = 0

Redshift Evolution

Redshift Evolution

Cosmic Variance – Mass Function

Simulating The ISW Effect

Simulating The ISW Effect

Simulating The ISW Effect

When?

Where?

- Need a large volume to observe the effect as it occurs most strongly for large-scale perturbation modes in the density field (100s of Mpcs)
- For Jubilee we need to resolve down to the scale of Luminous Red Galaxies (LRGs) (10¹³ M_☉ halos) to cross correlate with the ISW signal
- Need many snapshots to ensure integral is accurate (Jubilee has 30 between z = 0 and 6).

Potential Calculation

- We calculate the potential from the density:
 - Smooth the density field (CIC, 6000³ grid)
 - Calculate the potential from the density using Poisson's equation:

$$\nabla^2 \Phi(\vec{x}, t) = 4\pi G \bar{\rho}(t) a^2 \delta(\vec{x}, t)$$

- And the Multiple Fourier Transform (MFT) method (Hockney and Eastwood)
- From the potential we then calculate the Temperature:

$$\Delta T(\hat{n}) = \frac{2}{c^3} \bar{T_0} \int_0^{r_\mathrm{L}} \dot{\Phi}(r, \hat{n}) \, a \, dr$$

1.5 Gpc/h

500 Mpc/h

Cai et al. Maps

Cross Correlation With LRGs

- Complete remaining potentials from particle data (half done each particle snapshot is 5 Tb)
- Produce full sky maps of density and potential fields (not vital nice to have)
- Convert potential into ISW Temperature maps
- Produce full sky maps of LRGs from halo catalogues
- Cross correlate to ISW signal