

Bayesian inference of cosmic density fields from biased tracers

Metin Ata

Supervisors: Francisco-Shu Kitaura, Volker Müller Leibniz Institute for Astrophysics Potsdam

September 2, 2014

Bayesian inference of cosmic density fields , from biased tracers

Metin Ata , Supervisors: Francisco-Shu Kitaura, Volker Müller-September 2, 2014

3 Numerical Tests

4 Conclusions

O Numerical Tests

4 Conclusions

Motivation Bayesian inference of cosmic density fields , from biased tracers

The dark matter density field contains all cosmological information of interest:

- ► $\delta_M(\mathbf{r}) \rightarrow P(\mathbf{k})$ (e.g. reconstruction of BAO), cosmological parameters, $B(\mathbf{k}_1, \mathbf{k}_2)..., \Phi(\mathbf{r})$, ISW
- ▶ $v(r) \rightarrow \text{growth rate } \sigma_8 f(z)$, RSD, kinetic SZ-effect...
- ▶ $\delta_M(q) \rightarrow$ Initial Conditions, e.g. Constraint Simulations

So we need unbiased reconstructions of the dark matter density field

What is our input?

What is our input?

BDM Halos of the Bolshoi catalogue on $128^3 \ {\rm grid}$

Motivation Bayesian inference of cosmic density fields , from biased tracers

What is our input?

BDM Halos of the Bolshoi catalogue on $128^3 \ {\rm grid}$

Dark matter distribution of Bolshoi catalogue on 128^3 grid

Motivation Bayesian inference of cosmic density fields , from biased tracers

Challenges

We have to deal with several challenging tasks

- I Number density (Shot noise), completeness, mask, selection function
- II Bias (stochastic, non-linear, non-local)

O Numerical Tests

4 Conclusions

MethodBayesian inference of cosmic density fields , from biased tracers

Previous Works

Methods used in Cosmology in the past to infer dark matter density field:

A fundamental description of the stochastic nature of the bias is missing in inference algorithms!

Our method relies on Bayesian statistics: Posterior \propto Prior \times Likelihood

- Posterior $\mathcal{P}(\boldsymbol{\delta}_{\mathrm{M}}|\boldsymbol{N}_{\mathrm{G}}, I)$,
- 2 Prior $\pi(\boldsymbol{\delta}_{\mathrm{M}}|\{p_{\mathrm{c}}\}, I)$,
- $\textbf{3} \text{ Likelihood } \mathcal{L}(\boldsymbol{N}_{G}|\boldsymbol{\mathcal{B}}(\boldsymbol{N}_{G}|\boldsymbol{\delta}_{M}), I),$
- $\textcircled{B}(N_G|\delta_M) \text{ is our bias model that connects the prior to the likelihood, including stochastic and non-linear components}$

Prior

- ► Prior π(δ_M|{p_c}) represents knowledge of dark matter distribution in this framework
- ► Any structure formation model (LPT...) can be considered
- We use the lognormal assumption: Define s as logarithmic transform of density field:

$$s = \log(1 + \delta_{\mathrm{M}}) - \mu, \quad \mu = \langle \log(1 + \delta_{\mathrm{M}}) \rangle$$

- s is Gaussian (solution of continuity equation in comoving frame Coles&Jones91)
- Linearization/Gaussianization optimal for cosmological parameter estimation (Neyrinck+11)
- Good approximation of sufficient statistics (Carron&Szapudi13)

Likelihood

- ► Reminder: Likelihood models statistical nature of data $\mathcal{L} = \mathcal{L}(N_G | \lambda, I)$
- We focus on over-dispersion of galaxy counts in cells, studied by Peebles80, Somerville+01...Baldauf+14
- The NB f_{NB} and the SH f_{SH} (Saslaw&Hamilton84) distributions do model overdispersion with additional parameter β, b, Poisson does not:

$$f_{\rm P}(\lambda, N) = \frac{e^{-\lambda}\lambda^N}{N!},$$

$$f_{\rm NB}(\lambda, N, \beta) = \frac{\lambda^N}{N!} \frac{\Gamma(\beta + N)}{\Gamma(\beta)(\beta + \lambda)^N} \frac{1}{\left(1 + \frac{\lambda}{\beta}\right)^{\beta}},$$

$$f_{\rm SH}(\lambda, N, b) = \frac{\lambda}{N!} e^{-\lambda(1-b)-bN} (1-b) \left[\lambda(1-b) + bN\right]^{N-1}$$

Likelihood

Neyrinck+13, based on MIP simulations Aragon-Calvo13

MethodBayesian inference of cosmic density fields , from biased tracers.

Bias: Link between Prior and Likelihood

- ► Link prior (dark matter field) and likelihood (galaxy counts) with bias function $\mathcal{B}(N_G|\delta_M)$
- B(N_G|δ_M) relates to the expected number counts λ according to biasing parameters {p_{SB}}: L(N_G|B(N_G|δ_M)) = L(N_G|λ, {p_{SB}})
- General form is non-linear, scale-dependent and non-local
- ► Drawing discrete numbers $N_{\rm G}$ from function $\mathcal{B}(N_{\rm G}|\delta_{\rm M})$ implies stochasticity

Bias

Attempts to express bias relation in a pertubation series:

Fry&Gaztañaga93:

$$oldsymbol{
ho}_{
m h} \propto \sum_i a_i oldsymbol{\delta}_{
m Mi}$$

Cen&Ostriker93:

$$oldsymbol{
ho}_{
m h} \propto \exp\left[\sum_i b_i \log(1+oldsymbol{\delta}_{
m Mi})
ight]$$

Kitaura, Yepes&Prada14; Neyrinck+14:

$$oldsymbol{
ho}_{
m h} \propto oldsymbol{
ho}_{
m M}^lpha \, \exp\left[-\left(rac{
ho_{
m M}}{
ho_\epsilon}
ight)^\epsilon
ight]$$

We use :
$$\lambda_i \equiv \langle
ho_{{
m G}i}
angle = f_{ar N} w_i (
ho_{{
m M}i})^lpha \exp \left[- \left(rac{
ho_N}{
ho_n}
ight)^{lpha}
ight]$$

Bias relation

Neyrinck+13, Aragon-Calvo13

MethodBayesian inference of cosmic density fields , from biased tracers

15/27

Sampling from the Posterior

- We want to sample from the full posterior
- ► We use Hamiltonian sampling Duane+87, Neal93 to sample from the posterior P(s)

$$\begin{aligned} \mathcal{H}(\boldsymbol{s},\boldsymbol{p}) &= U(\boldsymbol{s}) + K(\boldsymbol{p}) \,, \\ U(\boldsymbol{s}) &= -\ln \mathcal{P}(\boldsymbol{s}) \end{aligned}$$

- The kinetic term is given $K(\mathbf{p}) = \sum_{i,j} \frac{1}{2} p_i M_{ij}^{-1} p_j$.
- So $\mathcal{P}(s)$ can be infered from

$$\exp(-\mathcal{H}) = \mathcal{P}(\boldsymbol{s}) \cdot \exp\left(-\sum_{i,j} \frac{1}{2} p_i M_{ij}^{-1} p_j\right)$$

Sampling

Evolution of system with Hamiltonian equations of motion

$$\frac{dx_i}{dt} = \frac{\partial \mathcal{H}}{\partial p} \frac{dp_i}{dt} = -\frac{\partial \mathcal{H}}{\partial s}$$

Accept iteration if:

 $P_{\text{Accept}} = \min\left[1, \exp\left(-\mathcal{H}(\boldsymbol{s_1}, \boldsymbol{p_1}) + \mathcal{H}(\boldsymbol{s_0}, \boldsymbol{p_0})\right)\right]$

• We need therefore $-\ln \mathcal{P}(s)$ and its gradient w.r.t. signal s

Sampling

$$P(\delta_{M}|\mathbf{N}, S(\{p_{C}\})) = \frac{1}{\sqrt{(2\pi)^{N_{C}} \det(\mathbf{S})}} \prod_{l=1}^{N_{C}} \frac{1}{1+\delta_{M}^{l}}$$
(1)

$$\times \exp\left(-\frac{1}{2} \sum_{ij} \left[(\ln\left(1+\delta_{M}^{i}\right)-\mu^{i}\right)S_{ij}^{-1}(\ln\left(1+\delta_{M}^{j}\right)-\mu^{j}) \right] \right)$$

$$\times \prod_{l=1}^{N_{C}} \left(\frac{f_{\bar{N}}w^{l}(1+\delta_{M}^{l})^{\alpha}e^{\left[-\left(\frac{1+\delta_{M}^{l}}{\rho_{\epsilon}}\right)^{\epsilon}\right]}}{N^{l}(1+\delta_{M}^{l})^{\alpha}e^{\left[-\left(\frac{1+\delta_{M}^{l}}{\rho_{\epsilon}}\right)^{\epsilon}\right]}} \right)^{N^{l}} \left(1+\frac{f_{\bar{N}}w^{l}(1+\delta_{M}^{l})^{\alpha}e^{\left[-\left(\frac{1+\delta_{M}^{l}}{\rho_{\epsilon}}\right)^{\epsilon}\right]}}{\beta}\right)^{\beta} \right)$$

MethodBayesian inference of cosmic density fields , from biased tracers

18/27

Sampling

$$\begin{aligned} -\frac{\partial}{\partial s_i} \ln \mathcal{P}(\delta_{\mathrm{M}}|N_G) &= -\frac{\partial}{\partial s_i} \ln \pi(\delta_{\mathrm{M}}|\{p_C\}) - \frac{\partial}{\partial s_i} \ln \mathcal{L}(N_G|\lambda) \\ &- \frac{\partial}{\partial s_i} \ln \pi \quad = \quad \frac{1}{2} \sum_{ij} (\delta_{ik}(S_{ij}^{-1}s_j) + \delta_{jk}(s_i S_{ij}^{-1})) \\ &= \quad \frac{1}{2} \left[\sum_j (S_{kj}^{-1}s_j) + \sum_i (s_i S_{ik}^{-1}) \right] \\ &- \frac{\partial}{\partial s_i} \ln \pi \quad = \quad \mathbf{S}^{-1} \mathbf{s} \end{aligned}$$

$$-\ln \mathcal{L}_{\text{NB}} = \sum_{i} (-N_i \ln \lambda_i + N_i \ln(\beta + \lambda_i) + \beta \ln(1 + \lambda_i/\beta) - c)$$

$$-\ln \mathcal{L}_{\text{SH}} = \sum_{i} (-\ln \lambda_i + \lambda_i(1-b) - (N_i-1) \times \ln(\lambda_i(1-b) + N_ib) - c)$$

$$\begin{array}{ll} \left(\frac{\partial s_i}{\partial \delta_j}\right)^{-1} & = & 1+\delta_j \\ \\ \frac{\partial \lambda_k}{\partial \delta_j} & = & \frac{\alpha \lambda_j}{1+\delta_j} - \frac{\epsilon \lambda_j}{1+\delta_j} \left(\frac{1+\delta_j}{\rho_\epsilon}\right)^\epsilon \\ \\ \frac{\partial \ln \mathcal{L}_{\rm NB}}{\partial \lambda_k} & = & -\frac{N_k}{\lambda_k} - \frac{N_k}{\beta+\lambda_k} + \frac{1}{1+\frac{\lambda_k}{\alpha}} \end{array}$$

MethodBayesian inference of cosmic density fields , from biased tracers

3 Numerical Tests

4 Conclusions

- We use the Bolshoi (Klypin+11) 250 h⁻¹ Mpc dark Matter Simulation containing 2048³ particles with WMAP5/7 compatible Cosmology.
- We also use a Halo catalogue based on Bolshoi calculated with BDM
- ► Subset taken selecting 2 · 10⁵ halos to demonstrate ARGO'S performance
- http://www.multidark.org/MultiDark/
- http://www.cosmosim.org/

21/27

Testing ARGO

Metin Ata+14 arXiv:1408.2566

- We run ARGO (Kitaura+12) with different configurations
- Each output of ARGO is a full catalogue
- We compare outputs to *true* dark matter distribution

Testing ARGO

Metin Ata+14 arXiv:1408.2566

Numerical Tests Bayesian inference of cosmic density fields , from biased tracers

testing **ARGO**

Metin Ata+14 arXiv:1408.2566

24/27

O Numerical Tests

4 Conclusions

Conclusions and future work

- Developed bayesian reconstruction framework to deal with over-dispersed distributed data and non-linear, stochastic bias
- Implemented this into the ARGO-code
- Tested with Bolshoi Dark Matter simulation
- Created unbiased dark matter distributions in 2point-statistics

TO DO:

- Implementing RSD
- Full framework to be applied to BOSS survey

Appendix A

Neyrinck+09

- $\bullet \ \frac{\pi(\boldsymbol{\delta}_{\mathrm{M}}|\mathbf{S}) =}{\frac{1}{\sqrt{(2\pi)^{N_{\mathrm{C}}}\det(\mathbf{S})}}}\exp\left(-\frac{1}{2}\boldsymbol{s}^{\dagger}\mathbf{S}^{-1}\boldsymbol{s}\right)$
- The covariance matrix $S \equiv \langle s^{\dagger}s \rangle$ (or power spectrum in Fourier-space)
- If $\delta_{
 m M} \ll 1
 ightarrow \pi$ is Gaussian

AppendixBayesian inference of cosmic density fields , from biased tracers