The Local Group in the Cosmic Web

in collaboration with Roberto González (PUC)

Stefan Gottloeber (AIP), Yehuda Hoffman (Jerusalem), Gustavo Yepes (UAM), Sebastian Bustamante (UdeA), Anatoly Klypin (NMSU), Rob Piontek, Matthias Steinmetz (AIP)

arXiv: 1408.3166

Jaime E. Forero-Romero - Universidad de los Andes (Colombia) je.forero@uniandes.edu.co

Pairs as the natural way to think about the MW

ELVIS, Garrison-Kimmel et al., 2014

Pairs as the natural way to think about the MW

DOVE, Sawala et al., 2014

CLUES also considers the pairs in its largescale environment

- Large Scales (5-7 Mpc) are fixed
- Small scales are random.
- 200 low resolution realizations until a LG is found.

Gottloeber, Hoffman, Yepes 1005.2687

Constrained simulations must be compared against random realizations

CLUES

BOLSHOI

We consider 5 conditions to define a LG in a unconstrained simulation

- Individual halo mass
- Halo separation
- Negative radial velocity
- Isolated (3Mpc)
- Isolated (7Mpc) (>5 10¹³ M_{sol})

The LGs in constrained simulations assemble earlier

JEF-R, Hoffman, Yepes, Gottloeber, Piontek, Klypin, Steinmetz, MNRAS 2011, 1107.0017

The LGs in constrained simulations assemble earlier

JEF-R, Hoffman, Yepes, Gottloeber, Piontek, Klypin, Steinmetz, MNRAS 2011, 1107.0017

The LGs in constrained simulations live quietly

JEF-R, Hoffman, Yepes, Gottloeber, Piontek, Klypin, Steinmetz, MNRAS 2011, 1107.0017

The LGs in constrained simulations are not common when compared against a random sample

JEF-R, Hoffman, Yepes, Gottloeber, Piontek, Klypin, Steinmetz, MNRAS 2011, 1107.0017

The LGs in constrained simulations are not common when compared against a random sample

JEF-R, Hoffman, Yepes, Gottloeber, Piontek, Klypin, Steinmetz, MNRAS 2011, 1107.0017

Conclusion #1

Constraints (large scales + meso scales) produce unusual pairs

Use Bolshoi to study in detail the Isolated Pairs

1st step: kinematics (Sohn, Anderson & van der Marel 2012)

LG kinematics is uncommon in LCDM

Because it is uncommon, it is difficult to build large samples

Physical	(%) Pairs consistent				
property	with observations $(1-\sigma)$				
	(full sample)				
$v_{\rm r}$ - $v_{\rm t}$	(0.4%) 8/1923				
$e_{\rm tot}$ - $l_{\rm orb}$	(15%)298/1923				
$\log_{10} \lambda$	(13%)257/1923				
$r_{ m t}=v_{ m t}/v_{ m r}$	(12%)242/1923				

JEF-R, Hoffman, Bustamante, Gottloeber, Yepes, ApJL 2013, 1303.2690

Larger samples can be constructed looking back in time for the special kinematic configurations

TABLE 1 MASS LIKELIHOOD OF MW+M31 PAIRS IN LG ANALOGUES

Constraints	$\log(M_{200c}/M_{\odot})$	68% conf. internval	90% conf. interval	N pairs
$V_{\rm RAD} + \Delta r$	12.60	-0.10 +0.12	-0.31 +0.45	347
$V_{\rm RAD} + \Delta r + V_{\rm TAN}$	12.45	-0.12 +0.11	-0.25 +0.25	88
$V_{\rm RAD} + \Delta r + V_{\rm TAN} + \log(1 + \delta)$	12.38	-0.07 +0.09	-0.25 +0.24	66
$V_{\rm RAD} + \Delta r + V_{\rm TAN} + \sigma_{\rm H}$	12.39	-0.07 +0.13	-0.19 +0.27	64
$V_{\text{RAD}} + \Delta r + V_{\text{TAN}} + \log(1 + \delta) + 1 \text{ Mpc}^{a}$	12.62	-0.11 +0.13	-0.28 +0.26	66
$V_{\rm RAD} + \Delta r + V_{\rm TAN} + \sigma_{\rm H} + 1 {\rm Mpc}$	12.62	-0.11 -0.13	-0.28 +0.27	64

Gonzalez, Kravtsov, Gnedin, ApJ 2014, 1312.2587

LG kinematics are equivalent to mass selection

Gonzalez, Kravtsov, Gnedin, ApJ 2014, 1312.2587

Conclusion #2

The observed LG kinematics is not common in LCDM.

Conclusion #3

Requiring consistency with observations imposes a tight constraint on the LG mass.

Use Bolshoi to study in detail the environment of LG pairs

Data publicly available

CosmoSim

The CosmoSim database provides results from cosmological simulations performed within different projects: the MultiDark project, the BolshoiP project, and the CLUES project.

The Spanish MultiDark Consolider project supports efforts to identify and detect matter, including dark matter simulations of the universe.

> MDR1 MDPL Bolshoi

The BolshoiP project contains a simulation like Bolshoi, with the same box size and resolution, but with Planck cosmology.

BolshoiP

The CLUES project deals with constrained simulations of the local universe, partially with gas and star formation.

> Clues3_LGDM Clues3_LGGas

Register to CosmoSim

CosmoSim.org is hosted and maintained by the Leibniz-Institute for Astrophysics Potsdam (AIP).

It is a contribution to the German Astrophysical Virtual Observatory.

The MultiDark and Polchoi

Please visit the linked sites for more information about the projects and about the appreciated form of acknowledgment, if the data is used in a scientific publication or proposal. The MultiDark simulations MDR1 and MDPL as well as the Bolshoi simulation are also available via the MultiDark database.

Environment is defined from the tidal tensor

$$T_{ij} = \frac{\partial^2 \phi}{\partial r_i \partial r_j}$$

$$\delta = \lambda_1 + \lambda_2 + \lambda_3$$

$$e = \frac{\lambda_3 - \lambda_1}{2(\lambda_1 + \lambda_2 + \lambda_3)} \qquad p = \frac{\lambda_1 + \lambda_3 - 2\lambda_2}{2(\lambda_1 + \lambda_2 + \lambda_3)}$$

defined over a grid of 1Mpc/h + 1Mpc/h gaussian smoothing

LG mass selects the environment

LG mass selects the environment

We look for alignments with the cosmic web

CM Frame

The strong T-web alignments for pairs is not mass dependent

Conclusions

- Density field constraints (large scales + meso scales) produce special halo pairs.
- The LG kinematics are not common in LCDM
- LG kinematics impose a tight constraint on the LG mass.
- The LG is most probably located in a filament with the **r** vector along the filament direction.

Sample	Peak	Filament	Sheet	Void
	n (%)	n (%)	n (%)	n (%)
2σ	4 (8.7)	24(52.2)	17(36.7)	1(2.2)
3σ	10(8.3)	58(48.3)	47 (39.2)	5(4.2)
General	1312(23.9)	1472(26.9)	1769 (32.3)	927 (16.9)