Simulations of the Epoch of reionization with **RAMSES-CUDATON**

P. Ocvirk Observatoire astronomique de Strasbourg Universite de Strasbourg

Observatoire astronomique de Strasbourg

Collaborators

- D.Aubert, **N. Gillet** (Observatoire astronomique de Strasbourg) (RT + sci. exp.) 0
- R. Teyssier, T. Stranex, M. Wetzstein (University of Zurich) (code + sci. exp.) Ο
- P. Shapiro, A. d'Aloisio, J. Choi (University of Texas, Austin) (sci. exp.) Ο
- I. Iliev, D. Sullivan, P. Thomas (University of Sussex) (sci. exp., AHF) Ο
- **S. Gottloeber** (Leibnitz Institute for Astrophysics, Potsdam) (ICs + sci. exp.) 0
- **A. Knebe, G. Yepes** (Universidad Autonoma de Madrid) (ICs + sci. exp.) 0
- **Y. Hoffmann** (Hebrew University of Jerusalem) (ICs) Ο
- F. Roy, Y. Rasera (Observatoire de Paris) (pfof) Ο
- Y. Dubois (IAP) (SN feedback) 0

Reionization & the Milky Way

Solution to missing satellite problem?

- ^oUV background
- o=> gas photo-evaporation
- O=> SF suppression low-mass galaxies
- o=> satellite galaxies, ultra-faint dwarfs

Bootes D = 60 kpc $r_{\rm h} = 220 \ {\rm pc}$ $M_v = -5.8 \text{ mag}$

Courtesy V. Belokur nd SDSS

Semi-analytical models

^oSatellite SF stops at z_{reion}

o=> sats = reionization fossils

osimplistic assumption:reionization uniform & instantaneous

Impact of local structure of UV field at reionization on MW satellite pop

=> Signature of reionization geometry survives down to z=0

Beyond current crude SAMs

- OMODELLING ASSUMPTIONS: SOURCE MULTIPLICITY + geometry?
- Feedback on sources?
 - Inside haloes: self-regulation? Ο
 - On halo environment: filaments / cold accretion ? 0
- Enough photons to reionize the whole Universe?
- Influence of environment?
 - Next big galaxy M31? 0
 - Other nearby massive gals? (ex. council of giants) 0
 - Nearby galaxy cluster? (ex.Virgo) Ο

Improvement requires numerical simulations

- coupled hydro-radiative galaxy formation code 0
- **External radiative feedback => c = 1** ! Ο
- High mass resolution (to resolve all sources down to 10⁷ M o haloes) Ο
- High spatial resolution (LG gals progenitors) => dx~10-20 h⁻¹ kpc 0
- Large volume (galaxy cluster + many LG examples) => L~ x10s Mpc 0 => big simulation

RAMSES-CUDATON

RAMSES-CUDATON

- For photons or gas flows on grid, max timestep is set by the Courant stability condition: $\Delta t < c \Delta x$
- $o = \Delta t_{rad} \sim 0.01 0.001 \Delta t_{hydro}$
- o => node hours(RHD) ~ 100-1000 node hours (hydro) !!!
- o 3 solutions:
 - o slow light (c = c/100): not suitable for reionization studies
 - o $\Delta x_{rad} \sim 10 \Delta x_{hydro}$: proscribed (lose low mass sources + FB)
 - GPU: x 80 speedup

TITAN at Oak Ridge National Laboratory

O 30-35 PB filesystem
O top I in 2013
O now top 2 (Tianhe - 2 is top I)

The TITAN RAMSES-CUDATON simulation

- O 64 h⁻¹ Mpc side, 4096³ grid, 4096³ DM parts (Mdm=3.5 x 10⁵ M °)
- **O** => $\Delta x \sim 15 h^{-1}$ kpc comoving, $\Delta x < 3$ kpc physical
- O each domain is I28x256x256 cells (maxed out)
- O => 8192 titan nodes (16 CPU + 1GPU per node)
- O from z=300 to z=4.2, WMAP5 ICs provided by CLUES project¹
- O ~ II days => 2.15 million node hours, 2000 (+800 000) timesteps
- O 138 snapshots (every 10 million years)
- O 2 PB data=> reduced dataset: 100 TB
 - O (cutouts HR + fullbox LR + halo fof catalogs, 13 million haloes, >200 million stars)

o ~60 LG analogs
o 100s of L* galaxies
o several groups, I galaxy cluster (Virgo analog)

o ~60 LG analogs
o 100s of L* galaxies
o several groups, I galaxy cluster (Virgo analog)

Temperature 6 Mpc thick slice

2 143.076

← → 2 h⁻¹ Mpc

Pierre OCVIRK - CLUES 2014

16 h⁻¹ Mpc

UV photon density 6 Mpc thick slice

← → 2 h⁻¹ Mpc

148 25.1518

Pierre OCVIRK - CLUES 2014

16 h⁻¹ Mpc

UV photon density 6 Mpc thick slice

← → 2 h⁻¹ Mpc

148 25.1518

Pierre OCVIRK - CLUES 2014

16 h⁻¹ Mpc

UV photon density 6 Mpc thick slice

Pierre OCVIRK - CLUES 2014

Preliminary Conclusions I: Radiation and satellite populations

- O 10^{8-9} M $_{\odot}$ haloes at z=3 will be ~ $10^{8.5-9.5}$ M $_{\odot}$ at z_{acc} = 1
- O SF suppressed at z_{reion}, result of UV radiation matter coupling
- O Lots of dark satellites: only 20% of 10⁸ M $_{\odot}$ haloes have stars at z=4
- O => very low stellar content (10³⁻⁵ M $_{\odot}$), old stellar populations, high M/L,
- O => good candidate progenitors for ultra-faint dwarfs and dark sats
- => Towards realistic satellite populations? => Missing satellites no more?
- Caveat: spatial resolution? cf. David Sullivan's talk

About the data

- (Mdm=3.5 x 10^5 M $_{\odot}$), 2PB, 138 snaps, >13 Million haloes at z=4.2
- o original dataset: 64 h⁻¹ Mpc side, 4096³ grid, 4096³ DM parts $o => \Delta x \sim 15 h^{-1}$ kpc comoving, $\Delta x < 3$ kpc physical
 - o reduced dataset:
 - o fullbox: rhogas, rhodm, rhophot, T, xion, vxyz on 2048 grid
 - o fullbox: fof halo cats, all star particles (xyz,mass,age)
 - o cutouts (493): 4 Mpc regions
 - o same as fullbox but at full res (4096) + all DM particles
 - o at OLCF: $\sim 100 \text{ PB}$
 - Transferred datasets:
 - o TACC (Texas): everything
 - o Potsdam (geras/erebos): ~ 2/3 of dataset, transfer finished • Strasbourg (buffy): $\sim 2/3$ of dataset, still copying o Discussion for projects open within CLUES

Project status

- o First INCITE Simulation finished in late 2013
- o Processing on OLCF clusters still ongoing (re-running FOFs)
- o (will require update of the datasets at TACC, Potsdam, Strasbourg)
- o processing allocation until august 31st, extended to november 1st
- o After that, data-only access
- Archiving of the reduced dataset at OLCF.
- o new INCITE proposal submitted for a run in 2015 with:
 - o RAMSES-CUDATON updated physics (e.g. chemical enrichment)
 - o EMMA (Aubert et al. 2014, in prep)
- o PRACE runs with RAMSES-CUDATON and RAMSES-RT (cf David Sullivan & Ilian Iliev).