
Zoomed initial conditions with
Ginnungagap

S. Pilipenko (LPI), G. Yepes (UAM)

showeet.com

http://www.showeet.com/

Ginnungagap code

● Scalable and flexible generator of initial conditions with
industry-style configuration

● Initially written by S. Knollmann

● Project home: https://code.google.com/p/ginnungagap/

● Ginnungagap reads or creates white noise fields and
writes velocity fields in grafic or HDF5 format

● Tools: generateICs, realSpaceConstraints,
estimateMemReq, ...

● The name means primordial chaos in the Nordic
mythology

https://code.google.com/p/ginnungagap/

Zoomed Initial Conditions

● Ginnungagap already
had the tools to scale
white noise fields

● The approach:
● produce several

levels, in steps of 2
in resolution

● produce velocity
fields

● combine particles
from different
levels according to
mask

Requirements

● Flexibility: any number of levels, all combinations of
usage of GADGET particle types, with or without
individual particle masses

● MPI & OpenMP parallelization

● Effective memory usage (no overheads)

● Effective usage of disk resources (avoid writing full
velocity fields)

● Ease of use, exhaustive documentation

● Tool for preparing the mask

Tests

1) Run zoomed simulation and the full box with the
resolution of the highest zoom level. As an example, one
of new CLUES constrained 500/h Mpc boxes is used.
Number of levels = 2. Highest resolution = 512^3. Zoom
region is a R=100 Mpc/h sphere in Lagrangian
coordinates.

2) Demonstrate that it is possible to run zoomed simulations
suitable to search for the Local Group in these 500/h Mpc
boxes. This requires particle mass ~10^9 Msun and

effective resolution of 2048^3.

Results – 2 levels
Sphere of D=200 Mpc was zoomed

Results – 2 levels: coordinates

Using the same GADGET setup
as the full box

Using
-DPLACEHIGHRESREGION

Softening length was ε=25 kpc/h

mean = 7 kpc/h
stddev = 29 kpc/h

mean = 21 kpc/h
stddev = 77 kpc/h

Halos were found using AHF and cross-identified by two methods (by
particle IDs and by coordinates)

Results – 2 levels: masses

Using the same GADGET setup
as the full box

Using
-DPLACEHIGHRESREGION

log(M
zoom

)-log(M
full

) :

mean = 2e-4
stddev = 0.02

mean = -0.04
stddev = 0.18

Results – 2 levels: mass functions

The Kolmogorov-Smirnov distance is 0.051,
probability 25.6% ≈ 1 σ

(Thanks to V. Yankelevich)

Results – 2 levels: concentrations

Using the same GADGET setup
as the full box

Using
-DPLACEHIGHRESREGION

log(C
zoom

)-log(C
full

) :

mean = 0.04
stddev = 0.16

mean = -0.07
stddev = 0.32

Results – 2048^3

● Sphere of radius
44/h Mpc in
Eulerian
coordinates was
simulated

● No haloes with
M>10^14 within 2
Mpc from boundary

● ~1000 CPU-h

Results – 2048^3 vs 1024^3

Coordinates Masses

mean -2.5 kpc/h
stddev 144 kpc/h

log(M1)-log(M2):

mean 0.015
stddev 0.15

Making zoomed initial conditions

● Obtaining modified ginnungagap:
git clone -b zoom https://code.google.com/p/ginnungagap/

● make the documentation first: cd to doc/, make, cd to ref/
and see index.html

● Read the 'Related pages'

Making zoomed initial conditions
[GenerateICs]
ginnungagapSection = Ginnungagap
doGas = false
doLongIDs = true
bufferSection = Buffer
inputSection = GenicsInput
outputSection = GenicsOutput
cosmologySection = Cosmology
maskSection = Mask
hierarchySection = Hierarchy
zoomLevel = 9
typeForLevel7 = 4
typeForLevel8 = 3
typeForLevel9 = 2
typeForLevel10 = 1

[Mask]
maskLevel = 7
minLevel = 7
maxLevel = 10
tileLevel = 1
readerType = legacy
readerSection = Lare

[Hierarchy]
numLevels = 11
minDim1D = 2
factor = 2

[Lare]
hasHeader = false
fileName = lare.dat
ngrid = 256 256 256

[GenicsInput]
velxSection = GenicsInput_velx
velySection = GenicsInput_vely
velzSection = GenicsInput_velz

[GenicsInput_velx]
type = hdf5
path = ./
prefix = ic_1024
qualifier = _velx
suffix = .h5

[GenicsInput_vely]
type = hdf5
path = ./
prefix = ic_1024
qualifier = _vely
suffix = .h5

[GenicsInput_velz]
type = hdf5
path = ./
prefix = ic_1024
qualifier = _velz
suffix = .h5

[GenicsOutput]
numFilesForLevel7 = 1
numFilesForLevel8 = 1
numFilesForLevel9 = 1
numFilesForLevel10 = 1
prefix = gzlv

Looking inside GenerateICs: hierarchy,
levels, masks...

Mask level cells Highest zoom
level cells

Tile level cell

Lowest zoom
level cell

bounda ry cells

The Hierarchy

● base level dimension

● number of levels

● step factor (usually 2)

● minimal zoom level

● maximal (highest) zoom level

● mask level

[Hierarchy]
numLevels = 7
minDim1D = 4
factor = 2

[Mask]
maskLevel = 4
minLevel = 3
maxLevel = 6
tileLevel = 0

In this example:
tile level dims = 4
min level dims = 4*2^3 = 32
mask level dims = 4*2^4 = 64
max level dims = 4*2^6 = 256

The Mask

● The initial mask (the Lagrangian region) is set on the
maskLevel.

● It is read as a list of cells, in which particles for the
highest level will be placed.

● Then, the mask is expanded to lower levels to make
boundaries.

The tiles

● They are used for the effective memory usage

● Every process reads only one tile at once

● Smaller tiles = less memory used, but more disk
operations

● Larger tiles = more memory used, less effective
parallelization

Input & output files and parallelization

● Each zoom level is written in at least one GADGET file

● Each level requires a separate run of generateICs with its
own .ini file because of:

● input velocity fields for each level
● how many processes to use

● Each MPI process should have an output file, so NMPI ≤
Nfiles for each level

● The memory should have space for one full file for each
MPI process

● If some zoom level has several output files, the volume is
divided between files by tiles.

Controlling the particle types and masses

● If two or more levels have the
same type, they will be
assigned particle masses for
each particle. Otherwise
massArr is used. Type 0 is
gas, type 1 is halo, ...

[GenerateICs]
...
typeForLevel3 = 3
typeForLevel4 = 3
typeForLevel5 = 2
typeForLevel6 = 1

[GenicsOutput]
numFilesForLevel3 = 1
numFilesForLevel4 = 1
numFilesForLevel5 = 1
numFilesForLevel6 = 2

Writing a specified region of velocity fields
with ginnungagap

Writing a specified region of velocity fields
with ginnungagap

● The disk space is needed to store white noise fields:

4*(dim1D^3) bytes

● For velocities: +12*(dim1D^3) normally or a tiny fraction if
we write only the essential part

● E.g. on SuperMUC, using 8 000 nodes and 16 Gb/node it
should be possible to generate 16384^3 ICs.

doPatch = true
patchLo = 384 384 384
patchDims = 256 256 256

TODO

● region to write – the .ini file entry

● compatibility with previous versions .ini files

● test if this works with gas

● more examples in documentation

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22
	Страница 23
	Страница 24
	Страница 25

