Radiative Feedback During Reionization

David Sullivan, Ilian Iliev and Peter Thomas

Outline

- I. Background/Motivation
- II. Methods codes
- III. Self-feedback of galaxies/stars
- IV. Summary
- V. Future Work

Timeline of Cosmic Evolution

Credit: NASA/ESA

Halo mass function & Galaxy Iuminosity function

The Current Status of Galaxy Formation

Joseph Silk^{1,2,3}, Gary A. Mamon¹

SN

Feedback required to modify shape of the Galaxy luminosity function

Missing Satellites Problem

Moore+99

- Semi-analytical models successfully reproduce satellite luminosity function by including UV background
- Simple recipes to regulate gas infall into halos - feedback

UV Background

 Homogeneous background Haardt & Madau 2001, Faucher-Giguére 2009 (pictured)

z = 0.0 z = 0.5

z = 1.0 z = 1.5

z = 2.0z = 2.5

z = 3.0 z = 3.5 z = 4.0 z = 4.5

z = 5.0z = 5.5

z = 6.0 z = 6.5

z = 7.0 z = 7.5 z = 8.0 z = 8.5

z = 9.0

 Assume optically thin gas – UV in every cell

Filtering Mass

- Takes into account full thermal history of the gas Gnedin & Hui, 98
- Set's the scale below which gas can fragment prior to reionization

The Characteristic Mass - M_C

Fitting function of Gnedin 00:

$$f_{\rm b}(M,z) = \langle f_{\rm b} \rangle \left\{ 1 + (2^{\alpha/3} - 1) \left(\frac{M}{M_{\rm c}(z)} \right)^{-\alpha} \right\}^{-\frac{3}{\alpha}}$$

- M_c(z) sets the halo mass at which the gas fraction is half the cosmic mean
- Gnedin 00 found that the filtering mass, M_F, gave a good fit to M_c
- The exponent α controls steepness of the transition between baryon poor/rich halos a value of 2 is found to fit well in the literature

Effect of Altering M_c and α

$$f_{\rm b}(M,z) = \langle f_{\rm b} \rangle \left\{ 1 + (2^{\alpha/3} - 1) \left(\frac{M}{M_{\rm c}(z)} \right)^{-\alpha} \right\}^{-\frac{3}{\alpha}}$$

The past 10+ years...

Effect of Reionization on Structure Formation in the Universe 2000

Nickolay Y. Gnedin

2006

Dwarf galaxies in voids: Suppressing star formation with photo-heating

Matthias Hoeft¹, Gustavo Yepes², Stefan Gottlöber³, and Volker Springel⁴

Massloss of galaxies due to a UV-background

Takashi Okamoto^{1*}, Liang Gao^{1,2} and Tom Theuns^{1,3}

2014 A PHYSICAL UNDERSTANDING OF HOW REIONIZATION SUPPRESSES ACCRETION ONTO DWARF HALOS

Yookyung Noh¹, Matthew McQuinn^{1,2}

- Radiative feedback is a hot topic...
- The latter three all agree on one thing the filtering mass overestimates M_C after reionization

2008

Jeans Instability

For an ideal gas, and using the virial theorem:

$$M_J \propto T^{\frac{3}{2}} \rho^{-\frac{1}{2}}$$

- Pre-reionization adiabatic collapse Jeans mass increases
- Post-reionization (approx.) isothermal collapse Jeans mass decreases
- Small fragments begin to collapse on their own - shorter free-fall time than original cloud

This Work

- Previous models have all assumed a redshift evolving, homogeneous UV background – full radiative transfer is expensive!
- Since then, codes/supercomputers have advanced significantly introduction of GPUs
- We can now afford to re-investigate these models using fully-coupled radiation hydrodynamics – compete treatment of the gas and radiation field
- Test simulations prior to large production runs

Upcoming projects..

- Two successful PRACE proposals almost 30 Million CPU hours in total
- Main focus high resolution (mass and spatial) simulations of reionization
- Resolve mini halos (10⁶ M_{*}/h) heavily suppressed during/ following reionization
- How does this impact their descendants?

Radiative Feedback

- Ionizing UV: Photoheats gas in IGM to ~10⁴ K; suppresses gas infall for low-mass (progenitor) halos; self-regulation of galaxy/star formation
- X-rays: Supernovae etc; mainly heat neutral IGM (21cm line emission)

The Code...

- RAMSES-CUDATON (Teyssier 2002; Aubert & Teyssier 2008; Stranex)
- Radiation and gas evolved simultaneously includes star formation and feedback
- Moment based Radiative Transfer
- Scales independently of source count important for cosmological simulations
- Coupled via Hydrogen thermochemistry
- GPU acceleration full speed of light

Moment Based Radiative Transfer

$$\frac{1}{c}\frac{\partial I_{v}}{\partial t} + \underline{n}\cdot\nabla I_{v} = -\kappa_{v}I_{v} + \eta_{v}$$

Isotropic Sources

$$E_{v} = \frac{1}{c} \oint I_{v} d\Omega$$

$$\underline{F_{v}} = \oint I_{v} \underline{n} d\Omega$$

$$\underline{F_{v}} = \frac{1}{c} \oint I_{v} \underline{n} \cdot \underline{n} d\Omega$$

$$\underline{P_{v}} = \frac{1}{c} \oint I_{v} \underline{n} \cdot \underline{n} d\Omega$$
Hyperbolic set of conservation laws – Euler equations
University of

Simulating Reionization

4Mpc/h on-a-side 256³ particles and cells

Gas Density: Impact of photoionization/heating

Coupled RHD

Hydro Only

Gas Power Spectra

Ratio of Baryon Power Spectra (ATON : No ATON)

Galactic scales most significantly suppressed – no great surprise

 Suppression strongest at galactic scales – begin to converge towards low redshifts

Evolution of the Equation of State

Coupled RHD

Hydro Only

Gas Fraction of Halos

Gas Fraction of Halos (continued)

Distinct Halos Only...

M_c and α

 Larger than Hoeft+ 06 prediction (although tuned to match voids) – preferentially heat dense gas

Although, this may be an overestimation – self-shielding?

Stellar Mass of Halos

Conclusions

- I. Coupled radiative transfer self-consistently accounts for full thermal history of the gas
- II. Instantaneous UV models miss time dependent local reionization history
- III. Self-regulation of low mass structures heavily suppresses gas fraction and star formation
- IV. Accurately predict stellar masses of halos at high redshift – radiative feedback efficient at suppressing star formation in low mass (progenitor) halos

Future Work

- Recently awarded supercomputer time (PRACE Tier - 0 & 1) – larger volumes and higher resolutions
- Extend simulations to present day
- Repeat using Adaptive Mesh Refinement – RAMSES-RT (Rosdahl, J et al. 2013)
- Munich semi-analytical model (Springel 2005)

Acknowledgements

- Much of this work was made possible by the yt project
- Thanks to my collaborators (Pierre Ocvirk, Paul Shapiro, Anson D'Aloisio and Junhwan Choi) for useful discussions
- Thanks to my supervisors, Ilian Iliev and Peter Thomas for their guidance
- Finally, thanks to the STFC for funding this studentship

Reionization History

Important points to include

- When talking about RT sim (apollo), reionization early but still get lower Mc (hence suppression) than coarse ATON run – over suppression of the gas in low resolutions
- Importance of spectral hardening for RHD
- Kimm & Cenn star formation and reionization?
- Why is RT expensive on CPU (and why does GPU work well?)
- Reduced speed of light

Assume nothing!

- Evidence for z_reion ~ 6 (Ly-alpha forest, images!)
- Halo mass func. And galaxy luminosity function have different shapes – feedback on the gas
- Importance of reionization:

missing satellites, star formation histories etc.

Filtering mass is wrong! (Ok08) -> because fb does not depend on T0

