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Timeline of Cosmic Evolution

Credit: NASA/ESA
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Halo mass function & Galaxy
luminosity function

The Current Status of Galaxy Formation

Joseph Silk!?#, Gary A. Mamon'

O Feedback required to
theory (CDM-motivated) modify shape of the
[+~ 3x10% | Galaxy luminosity function
— o ©)

observations

Galaxy luminosity " - 119
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Cumulative number of halos
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Missing Satellites Problem

Moore+ 99

_____ Simulated galaxy

o Virgo cluster data E

Simulated cluster :

O Semi-analytical models
successfully reproduce
satellite luminosity
function by including
UV background

O Simple recipes to
regulate gas infall into
halos - feedback
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UV Background

O Homogeneous
E——: background Haardt
il & Madau 2001,

z=15

Faucher-Giguére

i 2009 (pictured)

O Assume opfically thin

:-60 gas — UV in every cell
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Filtering Mass

O Takes into account full thermal history of the gas — Gnedin

& Hui, 98
O Set’s the scale below which gas can fragment prior to
reionization
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The Characteristic Mass - M-

O Fitting function of Gnedin 0O:

3
«@

fo(M,2) = (fv) {1 +(2°7% — 1) (M]i[z))—a}

O M.(z) setfs the halo mass at which the gas fraction is half the cosmic
mean

O Gnedin 00 found that the filtering mass, Mg, gave a good fit to M.

O The exponent a controls steepness of the transition between baryon
poor/rich halos — a value of 2 is found to fit well in the literature
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Effect of Altering M. and o
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The past 10+ years...

Effect of Reionization on Structure Formation in the Universe 2000

Nickolay Y. Gnedin

Dwarf galaxies in voids:
2006 Suppressing star formation with photo-heating

Matthias Hoeft!, Gustavo Yepes?, Stefan Gottlober®, and Volker Springel*
Massloss of galaxies due to a UV-background

2008

Takashi Okamoto'*, Liang Gao'? and Tom Theuns'*

A PHYSICAL UNDERSTANDING OF HOW REIONIZATION SUPPRESSES ACCRETION ONTO DWARF

2014 HALOS

YOOKYUNG NOH', MATTHEW McQuinn'+?

O Radiative feedback is a hot topic...

O The latter three all agree on one thing - the filtering mass
overestimates M after reionization 119
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Jeans Instabillity

O For an ideal gas, and using the virial theorem:

3 1
M,xT?p *

O Pre-reionization — adiabatic collapse — Jeans
Mass increases

O Post-reionization — (approx.) isothermal
collapse — Jeans mass decreases

O Small fragments begin to collapse on their
own - shorter free-fall fime than original US
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This Work

O Previous models have all assumed a redshift evolving,
homogeneous UV background — full radiative transfer is

expensive!l

O Since then, codes/supercomputers have advanced
significantly — introduction of GPUs

O We can now afford to re-investigate these models using
fully-coupled radiation hydrodynamics — compete
treatment of the gas and radiation field

O Test simulations prior to large production runs
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Upcoming projects..

O Two successful PRACE proposals — almost 30 Million CPU
hours in total

O Main focus — high resolution (mass and spatial)
simulations of reionization

O Resolve mini halos (10° M./h) — heavily suppressed during/
following reionization

O How does this impact their descendantse
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Radiative Feedback

O lonizing UV: Photoheats gas in IGM to ~10% K; suppresses
gas infall for low-mass (progenitor) halos; self-regulation
of galaxy/star formation

O Soft UV: Lyman-Werner absorption bands of molecular
hydrogen —— H, dissociation; main cooling
mechanism at early times; delay onset of star formation

O X-rays: Supernovae etc; mainly heat neutral IGM (21cm

line emission)
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The Code...

O RAMSES-CUDATON (Teyssier 2002; Aubert & Teyssier 2008;
Stranex)

O Radiation and gas evolved simultaneously — includes star
formation and feedback

O Moment based Radiative Transfer

O Scales independently of source count —important for
cosmological simulations

O Coupled via Hydrogen thermochemistry

O GPU acceleration — full speed of light
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Moment Based
Radiative Transfer

1 ol
197, +n-VI =-x 1 +n,
c Ot
0 Isofropic Sources
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5 — —
PV=—§I§IVQ°Q dQ s
- ¢ Hyperbolic set of
conservation laws — Euler lls

equations
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Simulating Reionization

z(Mpc (1 +2)1)

y (Mpc (1 +2)7") y (Mpc (1 +2)")

O 4Mpc/h on-a-side B 2563 particles and cells llS
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Gas Density: Impact of

ohotolonization/heating

Coupled RHD Hydro Only
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Gas Power Spectro

Ratio of Baryon Power Spectra (ATON : No ATON)
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O Galactic scales most significantly suppressed — no great surprise

O Suppression stfrongest at galactic scales — begin fo converge lls
towards low redshifts University of Sussex



Evolution of the Equation of State

Coupled RHD Hydro Only
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Gas Fraction of Halos

continued
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Distinct Halos Only...
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O Larger than Hoeft+ 06 prediction (although tuned to
martch voids) — preferentially heat dense gas

O Although, this may be an overestimation — self-shielding?
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Stellar Mass of Halos

(z = 3.994446) (z = 8.987205)
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Conclusions

Coupled radiative transfer self-consistently accounts
for full thermal history of the gas

Instantaneous UV models miss fime dependent local
reionization history

Self-regulation of low mass structures heavily
suppresses gas fraction and star formation

Accurately predict stellar masses of halos at high
redshift — radiative feedback efficient at suppressing
star formation in low mass (progenitor) halos llS
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Future Work

O Recently awarded
supercomputer time (PRACE

Tier- 0 & 1) — larger volumes
and higher resolutions

O Extend simulations to present
day

z (Mpe (142)7%)

O Repeat using Adaptive Mesh
Refinement — RAMSES-RT

(Rosdahl, J et al. 2013)

O Munich semi-analytical model
(Springel 2005)

y (Mpec (1 -i-z)_1 )

Density (g/cm?®)
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Reionization History

—  Mass weighted

—  Volume weighted

Tyir

14 16
z US
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Important points to include

O When talking about RT sim (apollo), reionization early but
still get lower Mc (hence suppression) than coarse ATON
run — over suppression of the gas in low resolutions

O Importance of spectral hardening for RHD
O Kimm & Cenn star formation and reionizatione

O Why is RT expensive on CPU (and why does GPU work
well?)

O Reduced speed of light
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Assume nothing!

O Evidence for z_reion ~ 6 (Ly-alpha forest, images!)

O Halo mass func. And galaxy luminosity function have
different shapes — feedback on the gas

O Importance of reionization:
missing satellites, star formation histories etc.

Filtering mass is wrong! (Ok08) -> because fb does not
depend on T0
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