The Gas Content and Environment of Milky-Way Mass Galaxies in CLUES

with C. Scannapieco, S. Gottlöber S. Nuza, G. Yepes (UAM), M. Steinmetz

Outline

- Introduction - environment at the loose group range
- A simulated 10 Mpc ($7 \mathrm{Mpc} / \mathrm{h}$) sphere
- MW mass galaxies
- Trends of MW mass galaxies
- Conclusions

Environment and galaxy formation

- Ellipticals more clustered than spirals (morphology-density, Dressler 1980 etc.)
- Environment is correlated with colour (clusters suppress star formation w.r.t. field, e.g. Blanton et al. 2003)
- In groups the effect is weaker, still see morphology-density, effect on gas in disks more controversial (McGee et al. 2008)
- MW and M3I at the extreme end, a pair or 'loose group’

Effects of pairs in simulations

- Simulated MW mass field galaxies vs pairs exhibit little visible (morphological) difference (Few et al. 20I2)
- No difference in concentrations or stellar masses within R_{200}, but an increased number of 'backsplash' galaxies (Garrison-Kimmel et al 2014)
- Filamentary structures more important? (Bahe et al 2013, Nuza 2014)

A IO Mpc sphere of CLUES ICs

AIP

A high-resolution region surrounding the simulated local group that at $\mathbf{z}=0$ is approximately spherical, with $10 \mathrm{Mpc}(7 \mathrm{Mpc} / \mathrm{h})$ radius (provided by Gustavo).
$\Omega_{M}=0.279, \Omega_{\wedge}=0.72 \mathrm{I}$, $\Omega_{\text {bar }}=0.046, \mathrm{~h}=0.7$, $\sigma_{8}=0.8$ $M_{\text {gas }}=5 \times 10^{5} M_{\text {sun }}$

How common are MWs?

- Stellar mass $10^{10.5}-10^{11.5} \mathrm{M}_{\text {sun }}$
- I per $\sim 350 \mathrm{Mpc}^{3}$ at $\mathrm{z}=0$

Moster et al., 2010

How common are MWs?

AIP

- | per $\approx 350 \mathrm{Mpc}^{3}$
- R=8.5 Mpe central region (uncontaminated)
- Volume 22500 Mpe ${ }^{3}$
- About 7 MWs

AIP

Our 6 Galaxies

- $10^{10.5-11.5}$ in stellar
- Gas column density
- R_{200} in red circles
- Star forming gas highlighted in orange

Creasey, Scannapieco et al., 2015 ApJ

The 1200 ckpc environment

- $100 \mathrm{~km} \mathrm{~s}^{-1}$ for 12 Gyr, (ignoring cosmological expansion), giving some measure of the domain from which baryons fall to the halo, i.e. how far does a baryon move.
- Some baryons can move faster (>1000 $\mathrm{km} \mathrm{s}^{-1}$!) but typically driven by SNe or AGN but not for anything like a Hubble time in MW mass objects.
- At this distance the MW and M3I share an environment
- ('Local volume' for Garrison-Kimmel et al 2014)

Peter Creasey

Properties within R_{200}

	R_{200} $[\mathrm{kpc}]$	M_{200} $\left[10^{10} \mathrm{M}_{\odot}\right]$	$\mathrm{M}_{\text {star }}$ $\left[10^{10} \mathrm{M}_{\odot}\right]$	$\mathrm{M}_{\text {gas }}$ $\left[10^{10} \mathrm{M}_{\odot}\right]$	M_{SF} $\left[10^{10} \mathrm{M}_{\odot}\right]$
G1	245	168	8.1	6.6	0.479
G2	219	120	6.4	5.2	0.369
G3	211	108	6.8	3.6	0.078
G4	166	52	3.3	1.8	0.146
G5	177	63	4.4	1.8	0.151
G6	174	60	3.7	1.5	0.090

Matter density in 1200 ckpc

Some statistics

- All in the restricted stellar mass range
- Filled symbols have stellar disks (by circularity, see also Sebas' talk)
- No (significant) correlation between stellar mass and SFR or star forming gas, or presence of a disk
- 4.4σ correlation between gas and stellar mass (not so surprising)
- 3.8σ correlation between δ_{1200} and SFR (a bit surprising)

Evolution with redshift?

- Continues back to $\mathrm{z}=0.5$, disappears at $\mathrm{z}=\mathrm{I}$ and above.

ideas?

- GI and G2 might be accreting each others extra-virial material (presumably as small objects)
- In a filamentary structure gas accretion may be faster (see also Nuza 2014, Bahé 2013), corresponding to G4
- Morphology might be more stochastic due to mergers
- Do the MW and M3I show enhanced SFR? (Mutch, Croton \& Poole 201I)

Merger history of GI and G2

AIP

Scannapieco, Creasey, Nuza et al., 2015 A\&A

Mixing in SPH - Ondrej Jaura (AIP)

AIP

Summary

- The MW and M3I are at the sparse end of the environment scale, the importance of which is an open question
- At the 1200 ckpc scale we see these environments merge around $z=0.5$, i.e. GI and G 2 live in a rich environment, the only other galaxy in a comparable density lies in a filament (G4), even when comparing with the Aquarius halos with the same code.
- Trends not seen with disk fraction (as with other studies), suggesting for loose groups merger history is a more important driving factor for morphology
- The galaxies in the highest density environments have the highest redshift zero SFRs, setting up a correlation between environment and SFR. This fades at higher redshift ($z>0.5$)
- In the richer environment gas accretion may replenish the star-forming gas (e.g. for G4 the filamentary structures of Nuza 2014, Bahé 2013),

