REIONIZATION : INFLUENCE ON LOW-MASS GALAXIES

Keri Dixon University of Sussex with Ilian Iliev and David Sullivan (Sussex), Garrelt Mellema (Stockholm), Kyungjin Ahn (Korea), plus more and CLUES

CLUES 09.05.2015

Reionization

First stars, early galaxies, quasars as sources

This radiation ionizes HI and heats the IGM

Extended and inhomogeneous process

History of the Universe

NASA/ESA/A. Feild (STScl)

Richardson et al. (2015)

Richardson et al. (2015)

SOURCE MODELS

Ionizing Source Models

Stars and galaxies

live in dark matter halos break into three categories: high-M atomically cooling halos (HMACHs > $10^9 M_{\odot}$) low-M atomically cooling halos ($10^8 M_{\odot}$ < LMACHS < $10^9 M_{\odot}$) ignore anything below

Ionizing Source Models

Stars and galaxies

live in dark matter halos break into three categories: high-M atomically cooling halos $(HMACHs > 10^9 M_{\odot})$ low-M atomically cooling halos $(10^8 M_{\odot} < LMACHS < 10^9 M_{\odot})$ ignore anything below Photon production rate $N_v \alpha f_v M$, where f_v depends on stuff

Radiative Feedback

Ionizing UV

Photoheats gas in IGM to ~10⁴ K Suppresses gas infall for low-mass halos Self-regulation of galaxy/star formation

Science is hard

Four source models (plus or minus)

(1) only HMACHs

largest halos contribute motivated mainly by resolution galaxies that we know and love

(2) suppressed LMACHs

HMACHs always contribute ionized region: no LMACHs strong photoheating feedback neutral region: higher efficiency early stars release ionizing photons

lliev et al (2006)

(3) partially suppressed LMACHs

ionized region: LMACHs suppressed some star formation survives neutral region: higher efficiency mimic transition from PopIII to PopII

(4) gradually suppressed LMACHs

neutral region: same efficiency do not guess early stars ionized region: gradual depression of f_{γ} mass-dependent motivated by galaxy sims (Wise Cen 2012)

Start with N-body (CubeP³M)

47 Mph/h: 1728³ particles 3456³ mesh resolve 10⁸ M_☉ WMAP5 cosmo 244 Mph/h: 4000³ particles 8000³ mesh resolve 10⁹ M_☉ +subgrid

244 Mph/h: 6912³ particles 13824³ mesh resolve 10⁹ M_☉ +subgrid

Smooth and apply RT (C²-Ray)

47 Mpc/h: 306³ and 612³ grids

244 Mpc/h: 250³ and 500³ grids

500 Mpc/h: 300³ and 600³ grids

z = 7.480 (47 Mpc/h, 612³ grid)

21-cm line of atomic hydrogen

$$\begin{split} \delta T_{b} &= T_{b} - T_{CMB} \sim x_{HI} (1+\delta)(1+z)^{1/2} \\ \text{for } T_{s} >> T_{CMB} \end{split}$$

LOCAL GROUP

Start with Gadget CLUES

64 Mpc/h smooth to 256³ and 512³ run C²-Ray with all source models no need for subgrid physics Questions How does reionization affect LG? Inside out vs outside in? What happens locally compared globally?

PRELIMINARY!!

no LMACHs

psupp LMACHs

