The distribution of mass components in simulated disk galaxies

Isabel M. Santos Santos PhD student UAM

> CLUES Meeting May 2015

1. SIMULATIONS. SELECTED SUITE OF GALAXIES

5 MaGICC MW galaxies

$$\begin{split} m_{star} &= 4.0 \times 10^4 M_\odot \\ m_{gas} &= 5.7 \times 10^4 M_\odot \\ m_{dm} &= 1.1 \times 10^6 M_\odot \\ \boldsymbol{\varepsilon} &= 312 \ pc \end{split}$$

7 MaGICC Irr galaxies

 $\begin{array}{l} \overline{m_{star}} = 4.3 \times 10^3 M_{\odot} \\ m_{gas} = 7.1 \times 10^3 M_{\odot} \\ m_{dm} = 1.4 \times 10^5 M_{\odot} \\ \boldsymbol{\varepsilon} = 156 \ pc \end{array}$

10 CLUES galaxies

- Isolated
- Mvir> $4 \times 10^{10} M_{\odot}$

 $2h^{-1}Mpc$ $4096^{3} particles$ $m_{star} = 1.3 \times 10^{4} M_{\odot}$ $m_{gas} = 1.8 \times 10^{4} M_{\odot}$ $m_{dm} = 2.9 \times 10^{5} M_{\odot}$ $\boldsymbol{\varepsilon}_{bar} = 226 \ pc$ $\boldsymbol{\varepsilon}_{dm} = 486 \ pc$

WMAP 3 cosmology: $H_0 = 73 \ km \ s^{-1} Mpc^{-1}; \ \Omega_m = 0.24;$ $\Omega_{\Lambda} = 0.76; \Omega_{bar} = 0.04; \ \sigma_8 = 0.76$

Name	$M_{halo}~(M_{\odot})$	$M_{*}~(M_{\odot})$	$M_{\rm HI}(M_\odot)$	h (kpc)	$\mu_0 \ ({ m mag} \ { m as}^{-1})$	$V_{\rm max}(kms^{-1})$	$V_{\rm flat}(kms^{-1})$
g15784_MW	1.49×10^{12}	5.67×10^{10}	1.96×10^{10}	3.00	18.98	222.10	222.10
g21647_MW	8.24×10^{11}	2.51×10^{10}	5.62×10^{9}	1.34	17.50	189.79	163.84
g1536_MW	7.10×10^{11}	2.36×10^{10}	6.78×10^{9}	3.46	20.54	175.95	175.95
g5664_MW	5.39×10^{11}	2.74×10^{10}	4.19×10^{9}	2.17	19.32	196.66	151.40
g7124_MW	4.47×10^{11}	6.30×10^9	3.49×10^{9}	2.72	20.56	120.14	120.14
g15807_Irr	2.82×10^{11}	1.46×10^{10}	4.68×10^{9}	1.94	18.68	141.21	141.21
g15784_Irr	1.70×10^{11}	4.26×10^{9}	2.70×10^{9}	2.28	20.31	106.90	106.90
g22437_Irr	1.10×10^{11}	7.44×10^{8}	1.08×10^{9}	2.09	21.56	75.40	75.40
g21647_Irr	9.65×10^{10}	1.98×10^{8}	3.68×10^{8}	1.73	22.75	60.85	60.85
g1536_Irr	8.04×10^{10}	4.46×10^{8}	4.39×10^{8}	1.70	21.76	67.16	67.16
g5664_Irr	5.87×10^{10}	2.36×10^{8}	2.56×10^{8}	1.62	22.22	59.50	59.50
g7124_Irr	5.23×10^{10}	1.32×10^{8}	2.30×10^{8}	1.16	21.61	52.77	52.77
C1	7.23×10^{11}	1.45×10^{10}	3.86×10^{9}	1.56	19.56	168.83	127.10
C2	5.31×10^{11}	1.11×10^{10}	6.32×10^{8}	1.83	20.40	123.59	123.59
C3	2.67×10^{11}	5.08×10^{9}	2.79×10^{9}	2.25	21.22	119.75	119.75
C4	1.87×10^{11}	4.18×10^{9}	9.77×10^{7}	1.45	20.07	101.21	101.21
C5	1.51×10^{11}	4.54×10^{9}	2.42×10^{9}	1.35	20.30	116.63	116.63
C6	1.29×10^{11}	2.08×10^{9}	2.74×10^{9}	1.53	21.29	101.66	101.66
C7	1.18×10^{11}	1.57×10^{9}	9.10×10^{8}	1.48	20.44	88.89	72.92
C8	1.21×10^{11}	1.57×10^{9}	6.34×10^{8}	1.03	20.19	85.22	85.22
C9	8.04×10^{10}	1.10×10^{9}	1.05×10^{8}	1.55	22.64	70.85	70.85
C10	6.44×10^{10}	3.78×10^{8}	6.33×10^{7}	0.86	21.55	53.35	53.35

EVOLUTION CODE

• N-BODY SPH CODE GASOLINE:

- Gas hydrodynamics and cooling
- Star formation: Schmidt law with SFR $\propto
 ho^{1.5}$
- SN feedback: Blastwave formalism (Stinson06) $\epsilon_{SN} \times 10^{51} erg$ of thermal energy released
- Deposition of metals → Chabrier IMF; Diffusion (Shen10)
- Uniform background radiation field
- Metal-line cooling (Shen10): MaGICC ✓, CLUES
- Early stellar feedback (Stinson13): MaGICC ✓ CLUES^x

2. MATCHING SCALING RELATIONS: Stellar & Baryon to Halo mass relations

Simulations: CLUES, MaGICC

 M*-M_{halo} relation matched over a wide mass range (Brook12b)

> MaGICC sims tuned to match the M*-Mhalo relation at ONE galaxy mass.
> CLUES sims also calibrated from experience to match it.

M_{bar} = stars + cold gas

 $M_{coldgas} = 1.3 \times M_{HI} (McGaugh12)$

M_{bar}-Mhalo relation also matched → not only correct total amount of stars, but also total cold gas (no parameter search)

Baryonic Tully-Fisher relation

Simulations: CLUES, MaGICC

- Both sets of simulations follow a single linear relation that matches the slope (3-4) of the observed BTFR
- Simulating proper disk galaxies:
 - Simulations need of feedback processes to "feed" angular momentum so that it doesn't die away due to mergers
 - Correct amount of angular momentum transferred to the gas→ gas settles into a disk with similar final flat velocities as observations

3. RESULTS: Rotation curves

Cold gas

☆ Stars

- All baryons (stars +coldgas)
- O Total (all components)

MaGICC galaxies

Rotation curves

CLUES galaxies

- Cold gas
- ☆ Stars
- All baryons (stars +coldgas)
- O Total (all components)

Baryonic Tully-Fisher relation

Simulations: CLUES, MaGICC

The Mass discrepancy – Acceleration relation

McGaugh, S. 2014

Mass Discrepancy =
$$D_b = \left(\frac{V_r}{V_b}\right) = \frac{M(r)}{M_b(r)}$$

Acceleration = $g_b = \left(\frac{V_b^2}{r}\right)$

Mass discrepancy-Acceleration relation D-g

McGaugh, S. 2014

Residuals around the D-g fits

Simulations:

-*All* data divided in 10 bins -A different 4 degree polynomial fit is found in each bin, giving higher weights to the points within it -errorbars= stand. dev

Observations: McGaugh, S. 2014

Mass discrepancy-Radius D-r

Simulations: CLUES, MaGICC

McGaugh, S. 2014

Observations: galaxies colored by their Surface brightness. LSB galaxies are more dominated by dark matter and thus have higher D at small radii.

4. SUMMARY

- We use extended rotation curve data (D-g relation)+TF to test the angular momentum content of simulated galaxies in LCDM
- The total suite of disk galaxies (spanning a wide range in masses and circular velocities) match:
 - $M^* \& M_{bar} M_{halo} \checkmark \rightarrow total amount of stars and cold gas is correct$
 - BTFR $\checkmark \rightarrow$ total amount of angular momentum is correct
 - D-g_{bar} ✓ → final internal distribution of gas, stars and DM at all radii through the disk is similar to that in real galaxies
- We show that the distribution of mass within disk galaxies with a wide range of masses and velocities, can also be well reproduced within a LCDM universe