## GREG STINSON (MPIA HEIDELBERG) WHICH STELLAR FEEDBACK MODEL IS THE BEST?

## THE GOAL

• We want to form beautiful galaxies with the right amount of stars

#### Behroozi+ (2013)



## OUTLINE

- Matching Stellar Mass Function
- ISM Model basics
  - Cooling
  - Star formation
  - Feedback: Kinetic vs. Thermal
- Feedback Timing
- Outstanding Issues
- Hybrid Models

#### STELLAR MASS FUNCTION

- luminosity translated to stellar mass
- Different shape from halo mass function!



#### ABUNDANCE MATCHING

- Star formation is low efficiency at all masses (25-35% of baryons at peak: MW mass)
  - Efficiency drops to low and high masses



#### TOO MANY STARS FORM

#### PRIMARILY IN THE CENTER



# OVERCOOLING

MUGS STINSON ET AL (2010)

#### 3 PARTS TO ISM MODEL

- Gas Cooling
- Star formation
- Energetic Feedback

GAS COOLING

![](_page_7_Figure_1.jpeg)

Dopita & Sutherland 10<sup>4</sup> K minimum (Eris)

![](_page_7_Figure_3.jpeg)

#### Low temperature cooling from Cloudy includes effects of radiation fields (e.g. Shen+ 2010)

### STAR FORMATION CRITERIA

- Density threshold
  - EAGLE: 0.1 cm<sup>-3</sup>
  - Governato: 100 cm<sup>-3</sup>
  - Hopkins:  $10^4$  cm<sup>-3</sup>
  - Gnedin & Kravtsov: Molecular H<sub>2</sub>
- Star formation efficiency  $\dot{M}_{SF} = c_{\star} M_{gas} / t_{ff}$ 
  - 2% 100% (Hopkins); see Agertz & Kravtsov (2015) 10%

![](_page_9_Figure_0.jpeg)

## STARS FORM FROM COOL, DENSE GAS

 $T_{MAX} = 15000 \text{ K}; N_{MIN} = 10 \text{ CM}^{-3} (\text{RESOLVED DENSITY})$ INHERIT KINEMATICS AND CHEMISTRY FROM PARENT GAS

#### STAR FORMATION RECIPE DOESN'T MATTER: HOPKINS (2013)

![](_page_10_Figure_1.jpeg)

![](_page_10_Figure_2.jpeg)

![](_page_11_Picture_0.jpeg)

#### HOW DO WE MODEL STELLAR FEEDBACK?

Infra

- Ideally, stellar feedbac
  - Limit star formation
  - Provide turbulence
  - drive outflows

One of our particles 10<sup>5</sup> M<sub>o</sub>

![](_page_12_Picture_6.jpeg)

#### HOW DO WE MODEL STELLAR FEEDBACK?

Infra

Eta

NASA / JPL-C.

- Problems
  - Dense gas cools
    fast (t<sub>cool</sub> < t<sub>dyn</sub>)
  - Small amount of hot gas has a large dynamical impact
  - How do you drive observed outflows?

One of our particles I0<sup>5</sup> M<sub>o</sub> I00 pc

![](_page_13_Picture_6.jpeg)

![](_page_14_Figure_0.jpeg)

## KINETIC FEEDBACK

TURN OFF **HYDRODYNAMICS** FOR A SHORT TIME AFTER PARTICLE KICKED

![](_page_15_Figure_0.jpeg)

#### KINETIC FEEDBACK from Ben Oppenheimer

![](_page_16_Picture_0.jpeg)

## THERMAL FEEDBACK

LIMIT COOLING WHILE SNII EXPLODE THERMAL PRESSURE CAUSES OUTFLOWS

![](_page_17_Picture_0.jpeg)

![](_page_17_Picture_1.jpeg)

Dark Matter Density Gas Density

## ILLUSTRIS KINETIC

![](_page_17_Picture_4.jpeg)

Annihilation

![](_page_18_Figure_0.jpeg)

## ILLUSTRIS KINETIC

### EAGLE THERMAL

![](_page_19_Figure_0.jpeg)

![](_page_20_Figure_0.jpeg)

# FEEDBACK GAS IN PHASE SIMULATION DIAGRAM

DELAY COOLING BASED ON BLASTWAVE EQUATIONS (STINSON+ 2006)

![](_page_21_Figure_0.jpeg)

THERMAL FEEDBACK IN PHASE DIAGRAM STINSON + (2006)

![](_page_22_Figure_0.jpeg)

#### THERMAL FEEDBACK IN PHASE DIAGRAM DALLA VECCHIA & SCHAYE (2012)

#### GAS PHASES

![](_page_23_Figure_1.jpeg)

#### Dalla Vecchia & Schaye (EAGLE)

#### Blastwave

#### ABUNDANCE MATCHING EVOLUTION

![](_page_24_Figure_1.jpeg)

Observed Luminosity Function evolution

## ABUNDANCE MATCHING EVOLUTION

MOSTER+(2013)

![](_page_25_Figure_2.jpeg)

star formation histories are mass dependent:

• little galaxies form stars late

![](_page_26_Figure_0.jpeg)

see also Guo, Qi+ (2011) Behroozi+ (2012)

#### 100% SUPERNOVA EFFICIENCY (10<sup>51</sup> ERG)

## TURN UP FEEDBACK

![](_page_27_Figure_2.jpeg)

![](_page_28_Figure_0.jpeg)

# SUPERNOVA FEEDBACK

![](_page_29_Picture_0.jpeg)

Eta Carinae Starforming Region NASA / JPL-Caltech / N. Smith (Univ. of Colorado at Boulder) Spitzer Space Telescope • IRAC Visible: NOAO/AURA/NSF ssc2005-12a

#### ETA CARINAE < 3 Myr old, but stars already tearing gas apart

![](_page_30_Figure_0.jpeg)

![](_page_31_Figure_0.jpeg)

![](_page_32_Figure_0.jpeg)

#### SN + ESF: MaGICC

0.7 Gyr

#### Strong SN only

0.7 Gyr

#### Low SN FB: MUGS

![](_page_33_Picture_6.jpeg)

### NiHAO: 100galaxies

#### 100GALAXIES PROJECT

L. WANG+ (2015)

![](_page_35_Figure_2.jpeg)

#### THE DISC THICKNESS PROBLEM ROSKAR (2014)

![](_page_36_Figure_1.jpeg)

#### THE DISC THICKNESS PROBLEM ROSKAR (2014)

![](_page_37_Picture_1.jpeg)

#### THE DISC THICKNESS PROBLEM ROSKAR (2014)

![](_page_38_Figure_1.jpeg)

#### OBSERVED MW THICK DISK

![](_page_39_Figure_1.jpeg)

![](_page_40_Figure_0.jpeg)

#### STINSON ET AL (2013)

#### BETTER BEHAVED RAMSES FEEDBACK

![](_page_41_Figure_1.jpeg)

#### QUENCHING CENTRAL STAR FORMATION AT HIGH MASSES

![](_page_42_Figure_1.jpeg)

#### GALAXY SIZES

![](_page_43_Figure_1.jpeg)

#### "THERMAL" IS PROBABLY WRONG KIND OF ENERGY

- Dissipates on the cooling timescale: 10,000 yr at SF densities
- There are other forms of energy that decay more slowly:
  - cosmic rays
  - turbulence
  - magnetic fields

#### KELLER + (2014)

![](_page_45_Figure_1.jpeg)

Energy reservoir dissipates according to resolution

#### HYBRID MODELS

![](_page_46_Figure_1.jpeg)

#### CHARACTERISTICS OF SUCCESSFUL MODELS

- Use 100% of available SN energy
- Distribute energy locally and immediately
- Add an early contribution from stellar winds or radiation pressure