THE CLUSTERING OF RADIO GALAXIES: BIASING AND EVOLUTION

Prabhakar Tiwari in collaboration with Adi Nusser

Physics Department Asher Space Science Institute-Technion Haifa 32000, Israel

May 12, 2015

◆□ → ◆□ → ◆注 → ◆注 → □ □

1/24

Introduction

We study the clustering of radio galaxies and extract biasing, large scale correlations and some other important results.

- NVSS data $\sim 6 \times 10^5$ sources with $S_{1.4 {
 m GHz}} > 10 {
 m mJy}$
- Assumptions:

redshift distribution from Hercules and CENSORS survey ratio of stellar to dark halo mass

• model the angular clustering of NVSS galaxies,

••••

• biasing factor, dipole, angular correlations ...

NRAO VLA Sky Survey (NVSS)

 ${\sim}1.7$ billion sources at 1.4 GHz, $S>2.5{\rm mJy},$ FWHM resolution is 45 arcsec.

3/24

NVSS data

- angular position at 1.4Ghz, FWHM resolution 45 arcsec, partial sky, 80% of the sky
- $|b| < 5^{\circ}$ to avoid Galactic contamination
- 22 bright extended local radio galaxies (Blake & Wall 2002)
- lower intensity cut to avoid systematic gradients in surface density (Blake & Wall 2002), 10 < S < 1000 mJy
- 574466 sources.

NVSS data: Dipole?

Cosmological Principle?

Velocity dipole: we are moving with 369 ± 0.9 Km/sec in RA= 167.9° , Dec= -6.93° (Hinshaw et al. 2009) NVSS data: Dipole?

Cosmological Principle?

Velocity dipole: we are moving with 369 ± 0.9 Km/sec in RA= 167.9° , Dec= -6.93° (Hinshaw et al. 2009)

イロン 不良 とくほど 不良 とうほう

5/24

An observer moving with a velocity \vec{v} (v << c), sees the sky brighter in forward direction due to Doppler boosting and aberration effect. $S \propto \nu^{-\alpha}$, with $\alpha \approx 0.75$, *Ellis & Baldwin 1984*.

Doppler effect

$$\nu_{obs} = \nu_{rest}\delta$$
, where $\delta \approx 1 + (v/c)\cos\theta \Rightarrow S_{obs} = S_{rest}\delta^{1+\alpha}$

Aberration effect changes the solid angle in the direction of motion

$$d\Omega_{obs} = d\Omega_{rest}\delta^{-2}$$

・ロン ・四 と ・ ヨ と ・ ヨ ・

6/24

Velocity Dipole in NVSS ...

Assume a power law form for the differential number count per unit solid angle per unit flux density $n_{rest}(\theta, \phi, S_{rest})$.

$$n_{rest}(\theta, \phi, S_{rest}) \equiv \frac{d^2 N_{rest}}{d\Omega_{rest} dS_{rest}} = kx \left(S_{rest}\right)^{-1-x}$$
(1)

Here $d^2 N_{rest}$ is the number of sources in a small bin, $d\Omega_{rest} dS_{rest}$ in solid angle and flux density. $d^2 N_{obs} = d^2 N_{rest}$ $n_{rest} d\Omega_{rest} dS_{rest} = kx (S_{rest})^{-1-x} d\Omega_{obs} \delta^2 dS_{rest}$

we obtain

$$ec{D}_{\mathsf{N}}(\mathsf{v}) = [2 + x(1 + lpha)](ec{\mathsf{v}}/\mathsf{c}).$$

and similarly $ec{D}_{\mathsf{S}}(\mathsf{v}) = [2 + x(1 + lpha)](ec{\mathsf{v}}/\mathsf{c})$

- Blake & Wall 2002, Singal 2011, Gibelyou & Huterer 2012, Rubart & Schwarz 2013, Tiwari et al 2014, Tiwari & Jain 2015 ...
- Inconsistent with CMBR predicted velocity dipole: Singal 2011, Tiwari et al 2014, Tiwari & Jain 2015.

data	speed (Km/s)	RA (deg)	DEC (deg)
CMBR (Hinshaw et al. 2009)	369 ± 0.9	167.9	-6.93
NVSS Source count ($S > 30$ mJy)	1320 ± 310	149 ± 22	-21 ± 22
NVSS Source count ($S > 30$ mJy)	1960 ± 530	135 ± 16	20 ± 14
NVSS polarization ($S > 30$ mJy)	2880 ± 670	136 ± 13	-16 ± 13

all directions are in J2000.

Simulating NVSS

• angular correlations

redshift distribution

• bias, luminosity function ...

Formulation

• Numeber density: $\Delta(\hat{\mathbf{r}}) = \frac{\mathcal{N}(\mathbf{r})}{\mathcal{N}} - 1$ $\mathcal{N}(\hat{\mathbf{r}})$ is projected number density (per steradian) in the direction $\hat{\mathbf{r}}$, $\overline{\mathcal{N}}$ is the mean of \mathcal{N} over the sky. $(\mathcal{N}(\hat{\mathbf{r}})$ is obtained by using HEALPix Gorski et al. 2005)

• decompose $\Delta(\hat{r})$ in spherical harmonics Y_{lm} : $d_{lm} = \int_{\text{survey}} d\Omega \Delta(\hat{r}) Y_{lm}(\hat{r})$

•
$$< |d_{lm}|^2 >_{ens} = (C_l + \frac{1}{N}) J_{lm},$$

where $J_{lm} = \int_{survey} |Y_{lm}|^2 d\Omega$ (Peebles 1980)

$$C_l^{\mathrm{obs}} = rac{1}{2l+1} \sum_m rac{|d_{lm}|^2}{J_{lm}} - rac{1}{\bar{\mathcal{N}}}$$

Cosmology Prediction

- The theoretical counterpart of Δ(r̂): Δ̃(r̂) = ∫₀[∞] δ(r̂r, z(r))p(r)dr where δ is the density contrast in 3D, r is comoving and p(r)dr is the probability of observing a galaxy between r and (r + dr).
- linear biasing $\delta(\mathbf{r}, z) = b(z)\delta^m(\mathbf{r}, z)$. $\delta^m(\mathbf{r}, z) = \delta_0^m(\mathbf{r})D(z)$, where D is linear growth factor of linear fluctuations normalized to unity at z = 0
- Therefore,

$$\tilde{a}_{lm} = \int d\Omega \tilde{\Delta} Y_{lm}(\hat{\boldsymbol{r}}) = \int d\Omega Y_{lm}(\hat{\boldsymbol{r}}) \int_0^\infty W(r) \delta_0(\hat{\boldsymbol{r}}r) dr$$

where W = D(z)b(z)p(r) with z = z(r).

Cosmology Prediction ...

• Fourier spacae:

$$\delta_0(\mathbf{r}) = \frac{1}{(2\pi)^3} \int d^3k \delta_{\mathbf{k}} \mathrm{e}^{i\mathbf{k}\cdot\mathbf{r}}$$

• substituting $e^{i \mathbf{k} \cdot \mathbf{r}} = 4\pi \sum_{l} i^{l} j_{l}(kr) Y_{lm}^{*}(\hat{\mathbf{n}}) Y_{lm}(\hat{\mathbf{k}})$

$$ilde{a}_{lm} = rac{\mathrm{i}^l}{2\pi^2} \int dr W \int d^3k \delta_{oldsymbol{k}} j_l(kr) Y^*_{lm}(\hat{oldsymbol{k}})$$

• Thefore (using $< \delta_{\mathbf{k}} \delta_{\mathbf{k}'} >= (2\pi)^3 \delta^{\mathrm{D}}(\mathbf{k} - \mathbf{k}') P(k)),$

$$\tilde{C}_{l} = < |\tilde{a}_{lm}|^{2} > = \frac{2}{\pi} \int dk k^{2} P(k) \left| \int_{0}^{\infty} dr W j_{l}(kr) \right|^{2}$$

• radial distribution p(r) and the biasing b(z) ?

Angular power spectrum

Angular power spectrum (C_l^{obs}) estimated from the NVSS data for S > 10 mJy. The solid curve is the theoretical \tilde{C}_l in the Λ CDM, dashed red curves are 1σ limits due to shot-noise and cosmic variance scatter.

The radial distribution modeling of p(r)

- Combined EIS-NVSS Survey(CENSORS) (Best 2003, Rigby 2011) and Hercules (Waddington 2001)
- CENSORS: redshifts and 1.4GHz fluxes, 135 radio sources over $6 deg^2$ complete down to 7.2 mJy 73% spectroscopic redshifts, remaining I z or K z magnitude-redshift relations.
- Hercules: 64 objects 1.2 deg^2 with S > 2 mJy.

We use the redshift distribution above S > 7.2 mJy where the two surveys are fairly complete. Adding two we have 165 and 131 sources, respectively for S > 7.2 mJy and 10 mJy.

The radial distribution ...

$$N^{
m model} \propto z^{a_1} \exp\left[-\left(rac{z}{a_2}
ight)^{a_3}
ight]$$

 a_1 , a_2 and a_3 are determined by N(z) and from the observed angular power spectrum, $C_l/(C_l^{obs})$.

sources with S > 7.2 mJy per redshift bin $\Delta z = 0.15$.

Bias estimation

• We write the fraction of radio loud AGNs with radio luminosity brighter than *P* as,

$$f_{_{
m RL}} = F(M_*,z)\tilde{\Phi}(P,z)$$

We take

$$F(M_*,z) = \left(\frac{M_*}{10^{11}M_{\odot}}\right)^{\alpha_0 + \alpha_1 z}$$

where $\alpha_0 = 2.5 \pm 0.2$ (Best et al. 2005).

$$b(z) = \frac{\int_{M_{\rm d}}^{M_{\rm u}} \mathrm{d}Mn(M,z)b_{\rm h}(M,z)F(M_*,z)}{\int_{M_{\rm d}}^{M_{\rm u}} \mathrm{d}Mn(M,z)F(M_*,z)}$$

 M_d and M_u are minimum and maximum halo mass to host a radio galaxy $M_d = 4 \times 10^{11} M_{\odot}$ which corresponds to $M_* = 10^{10} M_{\odot}$ (Moster 2013) $M_u = 10^{15} M_{\odot}$, the mass scale of rich galaxy clusters. n(M, z) is number density and b(M, z) is biasing of halos of mass M. (Sheth 2001)

Fitting the Model

constraints on the 5 parameters α_0 , α_1 , a_1 , a_2 and a_3 by maximizing the probability, P_{tot} , for observing C_l^{d} (from NVSS) and N(z) (from the joint CENSORS and Hercules catalogs).

we denote these parameters by θ_i ($i = 1 \cdots 5$) and by θ_i^{ML} the corresponding ML values.

$$P(\tilde{d}_{lm}) \propto rac{1}{(C_l+1/ar{\mathcal{N}})^{1/2}} \exp\left[-rac{1}{2}rac{ ilde{d}_{lm}^2}{C_l+1/ar{\mathcal{N}}}
ight]$$
 $P_l \propto rac{1}{(C_l+1/ar{\mathcal{N}})^{(2l+1)/2}} \exp\left(-rac{2l+1}{2}rac{C_l^{\mathrm{d}}}{C_l+1/ar{\mathcal{N}}}
ight)$

where $C_l^{d} = (\sum_m d_{lm}^2)/(2l+1)$. Maximizing this probability with respect to C_l yields $C_l = C_l^{d} - \bar{\mathcal{N}}^{-1} = C_l^{obs}$. 1 σ error on this C_l is $\sigma_{C_l}^2 = (-d^2 \ln P/dC_l^2)^{-1} = 2(C_l + \bar{\mathcal{N}}^{-1})^2/(2l+1)$.

Fitting the Model...

Using the power spectrum of the Λ CDM we maximize for C_I

$$P_{\text{tot}}(\{\theta_i\}; N, C_I^{\text{d}}) = P_{\alpha_0} \prod_{z_i} P_{N_i} \prod_{I=I_{min}}^{I_{max}} P_I$$

P(k) parametrized form from (Eisenstein & Hu 1998) $H_0 = 67.8 \text{kms}^{-1} \text{Mpc}^{-1}$, $\Omega_m = 0.308$, $\Omega_b = 0.0486$, $\sigma_8 = 0.815$, $n_s = 0.9667$ from Planck results 2015.

Angular power spectrum

Angular power spectrum (C_l^{obs}) estimated from the NVSS data for S > 10 mJy. The solid curve is the theoretical \tilde{C}_l in the Λ CDM, dashed red curves are 1σ limits due to shot-noise and cosmic variance scatter.

Results

ML estimates of the model 5 parameters and the corresponding error estimates for $I_{max} = 100$.

α_0	α_1	<i>a</i> 1	a ₂	a ₃
$2.529^{+0.184}_{-0.184}$	$1.854^{+0.708}_{-0.761}$	$0.739^{+1.077}_{-0.382}$	$0.705\substack{+0.689\\-0.649}$	$1.057^{+0.550}_{-0.506}$
± 0.197	± 0.742	± 0.572	± 0.792	± 0.531

The biasing factor of radio galaxies as a function of redshift for $\alpha_1 = 2.216$ the shaded area represents $\pm 1\sigma$ deviation from the best fit α_1 . For reference, the red dashed and blue dash-dot lines show, respectively, the b(z) for $\alpha_1 = 0$ and for halos of mass $3.3 \times 10^{13} M_{\odot}$. $b(z) = 0.33z^2 + 0.85z + 1.6$.

Results: NVSS Dipole

Simulation for NVSS dipole:-

Gaussian random density and velocity field assuming P(k), the power spectrum in standard ∧CDM (GRAFIC2, E. Bertschinger).

• N(z) and b(z) to get galaxy count in a bin (Poisson distribution!).

• Calculate angular correlation!

Results: NVSS Dipole (Realistic Modeling)

- 3D modeling: N(z) and b(z). lower the redshift higher the dipole
- Velocity Constrain: The local 100 Mpc bulge is moving with 300 KM/sec. indeed not zero but much less (<0.001) as compared to shot noise (~0.004)
- Tuning dipole direction to match observation sky area.

Results: NVSS Dipole (Realistic Modeling)

 Including all these we get the most convincing value (assuming ∧CDM) till data.

- NVSS observed dipole (0.085, local motion corrected) is at ~ 2 sigma probability assuming $\Lambda \text{CDM}!$

Thank You

< □ > < 部 > < 書 > < 書 > 差 → ○ Q (~ 24/24