Voids in a continuous DM density field: redshift evolution

Radek Wojtak Porat Fellow, KIPAC

collaboration: Devon Powell, Tom Abel

Outline

- 1. DM manifolds in phase space and new density estimator
- 2. Watershed algorithm
- 3. Grouping watershed basins into voids
- 4. Tracing evolution by matching catalogs of watershed voids: problems
- 5. Conditional watershed
- 6. From protovoids to voids: sizes, density profiles

Voids in cosmological simulations

keywords: dark matter halo density profile simulation keywords: void density profile simulation

Density from projecting DM sheets

mass is smoothly distributed between DM particles (tetrahedra)density is defined at every point

Shandarin et al (2012)

New density estimator

CIC

Tets

Abel, Hahn & Kaehler (2012)

Density on regular grid

Phase Sheet Intersector (PSI) Powell & Abel 2014

Watershed algorithm

Voids from watershed basins

- 250 removing boundaries (Platen et al 2007) 200 no hierarchy y [Mpc/h] 150 parametric 100 50 100 150 250 50 200 x [Mpc/h] grouping basins into voids (Neyrinck 2008) hierarchical network non-parametric
 - multiscale morphology filter (Aragon-Calvo et al 2007)
 - hierarchical network
 - parametric

Grouping watershed basins (ZOBOV)

- minima of all basins are higher than the central basin
- saddle points inside in voids lower than saddle points at the boundaries
- non-parametric, but it a common practice to use a density threshold defining a minimum density barrer

Void hierarchy

Sutter et al (2014)

Example

non-parametric (no density threshold)

Example

$$R_v = (8-14)Mpc/h \text{ at } z=0$$

Resolution test

256³ particles, 256³ grid

resimulation with 512³ particles downsampled to 256³, 256³ grid

Conditional watershed instead of matching

every minimum at z_i inherits a label of the corresponding basin from $z_i > z_{i+1}$

- keeps the same number of basins
- enables to keep the same grouping of basins into voids
- keeps the same hierarchical relations

Conditional watershed with fixed grouping

Conditional watershed: example

Evolution of R_v

collapsing

expanding

simple fitting formula: $R(z)/R(0)-1=a(z/(z+z_c))^{b}$

Growth dlnR_v/dlna

- grouping only at z=0
- non-parametric

pdf

independent grouping at every z density threshold

Sutter et al 2014

Evolution of density profiles

Conclusions

- 1. Grouping watershed basins into voids by minima and saddle points is subject to numerical noise. It leads to artificial instantaneous reconfigurations of individual voids in the course of their evolution.
- 2. Tracing evolution of voids defined as sets of watershed basins requires a.) keeping the same grouping of watershed basins into voids at all redshifts b.) employing conditional watershed.
- 3. Voids undergo a mild evolution in terms of size.
- 4. Evolution of the density profiles defined by iso-density contours resembles remarkably well an analytical model of a spherical void (development of a bucket-like shape).